Brain Energy Metabolism: An Integrated Cellular Perspective

Pierre J. Magistretti, Luc Pellerin, and Jean-Luc Martin


REFERENCES

1.     Andriezen WL. On a system of fibre-like cells surrounding the blood vessels of the brain of man and mammals, and its physiological significance. Int Monatsschr Anat Physiol 1893;10:532–540.

2.     Bagley PR, Tucker SP, Nolan C, et al. Anatomical mapping of glucose transporter protein and pyruvate dehydrogenase in rat brain: an immunogold study. Brain Res 1989;499:214–224.

3.     Barres BA. New roles for glia. J Neurosci 1991;11:3685–3694.

4.     Bignami A. Discussions in neuroscience. vol. VIII, no. 1. Amsterdam: Elsevier, 1991;1–45.

5.     Brookes N, Yarowsky PJ. Determinants of deoxyglucose uptake in cultured astrocytes: the role of the sodium pump. J Neurochem 1985;44:473–479.

6.     Cajal RS. Histologie du systθme nerveux de l'homme et des vertιbrιs. Paris: Maloine, 1909;11.

7.     Chιdotal A, Umbriaco D, Descarries L, Hartman BK, Hamel E. Light and electron microscopic immunocytochemical analysis of neurovascular relationships of choline-acetyltransferase and vasoactive intestinal peptide nerve terminals in rat cerebral cortex. J Comp Neurol 1994;343:57–71.

8.     Dringen R, Wiesinger H, Hamprecht B. Uptake of L-lactate by cultured rat brain neurons. Neurosci Lett 1993;163:5–7.

9.     Dringen R, Gebhardt R, Hamprecht B. Glycogen in astrocytes: possible function as lactate supply for neighboring cells. Brain Res 1993;623:2208–2214.

10.   Edvinsson L, MacKenzie ET, McCulloch J. Cerebral blood flow and metabolism. New York: Raven Press, 1993.

11.   Fellows LK, Boutelle MG, Fillenz M. Physiological stimulation increases nonoxidative glucose metabolism in the brain of the freely moving rat. J Neurochem 1993;60:1258–1263.

12.   Fonnum F. Glutamate: a neurotransmitter in mammalian brain. J Neurochem 1984;42:1–11.

13.   Fox PT, Raichle ME. Focal physiological uncoupling of cerebral blood flow and oxidative metabolism during somatosensory stimulation in human subjects. Proc Natl Acad Sci USA 1986;83:1140–1144.

14.   Fox PT, Raichle ME, Mintun MA, Dence C. Nonoxidative glucose consumption during focal physiologic neural activity. Science 1988;241:462–464.

15.   Frackowiak RSJ, Lenzi GL, Jones T, Heather JD. Quantitative measurement of regional cerebral blood flow and oxygen metabolism in man using 15O and positron emission tomography: theory, procedure, and normal values. J Comput Assist Tomogr 1980;4:727–736.

16.   Heidenreich KA, Gilmore PR, Garvey WT. Glucose transport in primary cultured neurons. J Neurosci Res 1989;22:397–407.

17.   Hφsli E, Hφsli L, Schousboe A. Amino acid uptake. In: Fedoroff S, Vernadakis A, eds. Astrocytes. Biochemistry, physiology, and pharmacology of astrocytes. Vol. 2. Orlando: Academic Press, 1986;133–153.

18.   Kadekaro M, Crane AM, Sokoloff L. Differential effects of electrical stimulation of sciatic nerve on metabolic activity in spinal cord and dorsal root ganglion in the rat. Proc Natl Acad Sci USA 1985;82:6010–6013.

19.   Katoh-Semba R, Keino H, Kashiwamata S. A possible contribution by glial cells to neuronal energy production: enzyme-histochemical studies in the developing rat cerebellum. Cell Tissue Res 1988;252:133–139.

20.   Kennedy C, Des Rosiers MH, Sakurada O, et al. Metabolic mapping of the primary visual system of the monkey by means of the autoradiographic [14C]deoxyglucose technique. Proc Natl Acad Sci USA 1976;73:4230–4234.

21.   Kety SS. The general metabolism of the brain in vivo. In: Richter D, ed. The metabolism of the nervous system. London: Pergamon Press, 1957;221–237.

22.   Kety SS, Schmidt CF. The nitrous oxide method for the quantitative determination of cerebral blood flow in man: theory, procedure, and normal values. J Clin Invest 1948;27:476–483.

23.   Kimelberg HK, Norenberg MD. Astrocytes. Sci Am 1989;260:44–52.

24.   Kimelberg HK, Jalonen T, Walz W. Regulation of the brain microenvironment: transmitters and ions. In: Murphy S, ed. Astrocytes: pharmacology and function. San Diego: Academic Press, 1993;193.

25.   Kuschinsky W, Wahl M. Local chemical and neurogenic regulation of cerebral vascular resistance. Physiol Rev 1978;58:656–689.

26.   Larrabee MG. Extracellular intermediates of glucose metabolism:  fluxes of endogenous lactate and alanine through extracellular pools in embryonic sympathetic ganglia. J Neurochem 1992;59:1041–1052.

27.   Lassen NA, Ingvar D, Skinhoj E. Brain function and blood flow. Sci Am 1978;239:62–71.

28.   Lipton P. Effects of membrane depolarization on nicotinamide nucleotide fluorescence in brain slices. Biochem J 1973;136:999–1009.

29.   Lipton P, Robacker K. Glycolysis and brain function: [K+]0 stimulation of protein synthesis and K+ uptake require glycolysis. FASEB J 1983;42:2875–2880.

30.   Lopes-Cardozo M, Larsson OM, Schousboe A. Acetoacetate and glucose as lipid precursors and energy substrates in primary cultures of astrocytes and neurons from mouse cerebral cortex. J Neurochem 1986;46:773–778.

31.   Magistretti PJ, Morrison JH, Shoemaker WJ, Sapin V, Bloom FE. Vasoactive intestinal polypeptide induces glycogenolysis in mouse cortical slices: a possible regulatory mechanism for the local control of energy metabolism. Proc Natl Acad Sci USA 1981;78:6535–6539.

32.   Magistretti PJ, Manthorpe M, Bloom FE, Varon S. Functional receptors for vasoactive intestinal polypeptide in cultured astroglia from neonatal rat brain. Regul Pept 1983;6:71–80.

33.   Magistretti PJ, Morrison JH. Noradrenaline- and vasoactive intestinal peptide-containing neuronal systems in neocortex: functional convergence with contrasting morphology. Neuroscience 1988;24: 367–378.

34.   Magistretti PJ, Sorg O, Martin JL. Regulation of glycogen metabolism in astrocytes: physiological, pharmacological, and pathological aspects. In: Murphy S, ed. Astrocytes: pharmacology and function. San Diego: Academic Press, 1993;243.

35.   Mata M, Fink DJ, Gainer H, et al. Activity-dependent energy metabolism in rat posterior pituitary primarily reflects sodium pump activity. J Neurochem 1980;34:213–215.

36.   McIlwain H, Bachelard HS. In: Biochemistry and the central nervous system. Edinburgh: Churchill Livingstone, 1985;54–83.

37.   Milner TA, Aoki C, Sheu RKF, Blass JP, Pickel VM. Light microscopic immunocytochemical localization of pyruvate dehydrogenase complex in rat brain: topographical distribution and relation to cholinergic and catecholaminergic nuclei. J Neurosci 1987;7:3171–3190.

38.   Miyaoka M, Shinohara M, Batipps M, Pettigrew KD, Kennedy C, Sokoloff L. The relationship between the intensity of the stimulus and the metabolic response in the visual system of the rat. Acta Neurol Scand Suppl 1979;60:16–17.

39.   Mόller HW, Beckh S, Seifert W. Neurotrophic factor for central neurons. Proc Natl Acad Sci USA 1984;81:1248–1252.

40.   Ogawa S, Tank DW, Menon R, et al. Intrinsic signal changes accompanying sensory stimulation: functional brain mapping with magnetic resonance imaging. Proc Natl Acad Sci USA 1992;89: 5951–5955.

41.   Owen OE, Morgan AP, Kemp HG, Sullivan JM, Herrera MG, Cahill GF Jr. Brain metabolism during fasting. J Clin Invest 1967;46: 1589–1595.

42.   Owman C, Hardebo JE, eds. Neural regulation of brain circulation. Amsterdam: Elsevier, 1986.

43.   Pardridge WM, Oldendorf WH. Transport of metabolic substrates through the blood–brain barrier. J Neurochem 1977;28:5–12.

44.   Paul RJ, Hardin DC, Raeymaekers L, Wuytack F, Casteels R. Vascular smooth muscle: aerobic glycolysis linked to sodium and potassium transport processes. Science 1979;206:1414–1416.

45.   Paulson OB, Newman EA. Does the release of potassium from astrocyte endfeet regulate cerebral blood flow? Science 1987; 237:896–898.

46.   Peters A, Palay SL, Webster HD, eds. The fine structure of the nervous system: the neurons and supporting cells. 2nd ed. Philadelphia: W. B. Saunders, 1991.

47.   Phelps CH. Barbiturate-induced glycogen accumulation in brain. An electron microscopic study. Brain Res 1972;39:225–234.

48.   Poitry-Yamate CL, Tsacopoulos M. Glucose metabolism in freshly isolated Mόller glial cells from a mammalian retina. J Comp Neurol 1992;320:257–266.

49.   Prichard J, Rothman D, Novotny E, et al. Lactate rise detected by 1H NMR in human visual cortex during physiologic stimulation. Proc Natl Acad Sci USA 1991;88:5829–5831.

50.   Proverbio F, Hoffman JF. Membrane compartmentalized ATP and its preferential use by the Na+-K+ ATPase of human red cell ghosts. J Gen Physiol 1977;69:605–632.

51.   Raffin CH, Rosenthal M, Busto R, Sick TJ. Glycolysis, oxidative metabolism and brain potassium ion clearance. J Cereb Blood Flow Metab 1992;12:34–42.

52.   Raichle ME. Quantitative in vivo autoradiography with positron emission tomography. Brain Res Rev 1979;1:47–68.

53.   Raichle ME, Martin WRW, Herscovitch P, Mintun MA, Markham J. Brain blood flow measured with intravenous H215O. II. Implementation and validation. J Nucl Med 1983;24:790–798.

54.   Sappey-Marinier D, Calabrese G, Fein G, Hugg JW, Biggins C, Weiner MW. Effect of photic stimulation on human visual cortex lactate and phosphates using 1H and 31P magnetic resonance spectroscopy. J Cereb Blood Flow Metab 1992;12:584–592.

55.   Schurr A, West CA, Rigor BM. Lactate-supported synaptic function in the rat hippocampal slice preparation. Science 1988;240:1326–1328.

56.   Selak I, Skaper SD, Varon S. Pyruvate participation in the low molecular weight trophic activity for central nervous system neurons in glia-conditioned media. J Neurosci 1985;5:23–28.

57.   Shank RP, Leo GC, Zielke HR. Cerebral metabolic compartmentation as revealed by nuclear magnetic resonance analysis of D[1-13C]glucose metabolism. J Neurochem 1993;61:315–323.

58.   Siesjφ BK. Brain energy metabolism. New York: John Wiley, 1978;42–43.

59.   Sloviter HA, Kamimoto T. The isolated, perfused rat brain preparation metabolizes mannose but not maltose. J Neurochem 1970;17: 1109–1111.

60.   Sokoloff L. Circulation and energy metabolism of the brain. In: Siegel G, Agranoff B, Albers RW, and Molinoff P, eds. Basic neurochemistry: molecular, cellular, and medical aspects. 4th ed. New York: Raven Press, 1989.

61.   Sokoloff L, Reivich M, Kennedy C, et al. The [14C]deoxyglucose method for the measurement of local cerebral glucose utilization: theory, procedure, and normal values in the conscious and  anesthetized albino rat. J Neurochem 1977;28:897–916.

62.   Sonnewald U, Westergaard N, Krane J, Unsgεrd G, Petersen SB, Schousboe A. First direct demonstration of preferential release of citrate from astrocytes using [13C]NMR spectroscopy of cultured neurons and astrocytes. Neurosci Lett 1991;128:235–239.

63.   Sorg O, Magistretti PJ. Characterization of the glycogenolysis elicited by vasoactive intestinal peptide, noradrenaline and adenosine in primary cultures of mouse cerebral cortical astrocytes. Brain Res 1991;563:227–233.

64.   Swanson RA, Morton MM, Sagar SM, Sharp FR. Sensory stimulation induces local cerebral glycogenolysis: demonstration by autoradiography. Neuroscience 1992;51:451–461.

65.   Swanson RA, Yu ACH, Sharp FR, Chan PH. Regulation of glycogen content in primary astrocyte culture: effect of glucose analogues, phenobarbital, and methionine sulfoximine. J Neurochem 1989;52:1359–1365.

66.   Teller DN, Banay-Schwartz M, Deguzman T, Lajtha A. Energetics of amino acid transport into brain slices: effects of glucose depletion and substitution of Krebs' cycle intermediates. Brain Res 1977; 131:321–334.

67.   Tower DB, Young OM. The activities of butyrylcholinesterase and carbonic anhydrase, the rate of anaerobic glycolysis, and the question of a constant density of glial cells in cerebral cortices of various mammalian species from mouse to whale. J Neurochem 1973; 20:269–278.

68.   Ueki M, Linn F, Hossmann KA. Functional activation of cerebral blood flow and metabolism before and after global ischemia of rat brain. J Cereb Blood Flow Metab 1988;8:486–494.

69.   Van den Berg C. In: Hockey GRJ, Gaillard AWK, Coles MGH, eds. Energetics and Human Information Processing. Boston: Nijhoff, 1986;131–135.

70.   Walz W, Mukerji S. Lactate release from cultured astrocytes and neurones: a comparison. Glia 1988;1:366–370.

71.   Yarowsky PJ, Wierwille R, Brookes N. Effect of monensin on deoxyglucose uptake in cultured astrocytes: energy metabolism is coupled to sodium entry. J Neurosci 1986;6:859–866.

72.   Yu N, Martin JL, Stella N, Magistretti PJ. Arachidonic acid stimulates glucose uptake in cerebral cortical astrocytes. Proc Natl Acad Sci USA 1993;90:4042–4046.

73.   Zeki S, Watson JDG, Lueck CJ, Friston KJ, Kennard C, Frackowiak RSJ. A direct demonstration of functional specialization in human visual cortex. J Neurosci 1991;11:641–649.

Back to Chapter

published 2000