Margery C. Beinfeld
Department of Pharmacology and Experimental Therapeutics Tufts
University School of Medicine
136 Harrison Ave. Boston, MA 02111.

Telephone: 617-636-0346
Fax: 617-636-6738


1. Adams JB, Pyke RE, Costa J, et al. A double-blind, placebo-controlled study of a CCK-B receptor antagonist, CI-988, in patients with generalized anxiety disorder. J Clin Psychopharmacol 1995;15:428-434.

2. Albrecht D, Zippel U, Henklein P. Inhibitory effects of cholecystokinin on rat's geniculate activity can be blocked by GABA-antagonists. Neurosci Lett 1995;197:69-71.

3. Allard LR, Beinfeld MC. Vasoactive intestinal polypeptide (VIP) inhibits potassium-induced release of cholecystokinin (CCK) from rat caudato-putamen (cp) but not from cerebral cortex. Neuropeptides 1986;8:287-293.

4. Allard LR, Beinfeld MC. Phorbol esters stimulate the potassium-induced release of cholecystokinin from slices of cerebral cortex, caudato-putamen, and hippocampus incubated in vitro. Biochem Biophys Res Commun 1988;153:372-376.

5. Allard LR, Brog JS, Viereck JC, et al. Inhibition of potassium-evoked release of cholecystokinin (CCK) from rat caudato-putamen, cerebral cortex, and hippocampus incubated in vitro by phencyclidine (PCP) and related compounds. Brain Res 1990;522:224-226.

6. Balschun D, Reymann KG. Cholecystokinin (CCK-8S) prolongs "unsaturated" 0-pulse induced long-term potentiation in rat hippocampal CA1 in vitro. Neuropeptides 1994;26:421-427.

7. Barnes K, Turner AJ, Kenney AJ. Membrane localization of endopeptidase-24.11 and peptidyldipeptidase A (Angiotensin Converting Enzyme) in the pig brain: a study using subcellular fractionation and electron microscopic immunocytochemistry. J Neurochem 1992;58:2088-2096.

8. Beinfeld MC. CCK mRNA expression, pro-CCK processing, and regulated secretion of immunoreactive CCK peptides by rat insulinoma (RIN 5F) and mouse pituitary tumor (AtT-20) cells in culture. Neuropeptides 1992;22:213-217.

9. Beinfeld MC. Inhibition of pro-cholecystokinin sulfation by treatment with sodium chlorate alters its processing and decreases cellular content and secretion of CCK 8. Neuropeptides 1994;26:195-200.

10. Beinfeld MC. Cholecystokinin (CCK) release from rat brain slices in vitro is enhanced by agents which elevate intracellular cAMP. Reg Peptides 1996;67:75-77.

11. Beinfeld MC, Meyer DK, Eskay RL, Jensen RT, Brownstein MJ. The distribution of cholecystokinin in the central nervous system of the rat as determined by radioimmunoassay. Brain Res 1981;212:51-57.

12. Bjorklund H, Fahrenkrug J, Seiger A, Vanderhaeghen J-J, Olson L. On the origin and distribution of vasoactive intestinal polypeptide-, peptide HI-, and cholecystokinin-like-immunoreactive nerve fibers in the rat iris. Cell Tiss Res 1985;242:1-7.

13. Bock MG, DePardo RM, Evans BE, et al. Benzodiazepine gastrin and brain cholecystokinin receptor ligands: L-365,260. J Med Chem 1989;32:13-16.

14. Boden P, Woodruff GN. Ionic mechanisms underlying cholecystokinin action in rat brain. Ann N Y Acad Sci 1994;713:129-137.

15. Boden PR, Woodruff GN. Benzodiazepine/cholecystokinin interactions at functional CCK receptors in rat brain. Br J Pharmacol 1994;112:429-434.

16. Bondy CA, Jensen RT, Brady LS, Gainer H. Cholecystokinin evokes secretion of oxytocin and vasopressin from rat neural lobe independent of external calcium. Proc Natl Acad Sci USA 1989;86:5198-5201.

17. Boyce S, Rupniak NMJ, Tye S, Steventon MJ, Iverson SD. Modulatory role for CCK-B antagonists in Parkinson's Disease. Clin Neuropharmacol 1990;13:339-347.

18. Bradwejn J, deMontigny C. Benzodiazepines antagonize cholecystokinin-induced activation of rat hippocampal neurones. Nature 1984;321:363-364.

19. Bradwejn J, Koszycki D, Couetoux de Tertre A, Paradis M, Bourin M. Effects of flumazenil on cholecystokinin-tetrapeptide-induced panic symptoms in healthy volunteers. Psychopharmacology 1994;114:257-261.

20. Bradwejn J, Koszycki D, Couetoux de Tertre A, et al. The panicogenic effects of cholecystokinin-tetrapeptide are antagonized by L-365,260, a central cholecystokinin receptor antagonists, in patients with panic disorder. Arch Gen Psychiatry 1994;51:486-493.

21. Britto LR, Hamassaki DE, Keyser KT, Karten HJ. Neurotransmitters, receptors, and neuropeptides in the accessory optic system: an immunohistochemical survey in the pigeon (Columa livia). Visual Neurosci 1997;3:463-475.

22. Brog JS, Beinfeld MC. Cholecystokinin release from the rat caudate-putamen, cortex, and hippocampus is increased by activation of the D1 dopamine receptor. J Pharmacol Exp Ther 1992;260:343-348.

23. Brown CH, Munro G, Murphy NP, Leng G, Russell JA. Activation of oxytocin neurones by system cholecystokinin is unchanged by morphine dependence or withdrawal excitation in the rat. J Physiol 1996;496.3:787-794.

24. Burgunder J, Young WS, III. The distribution of thalamic projection neurons containing cholecystokinin mRNA, using in situ hybridization histochemistry and retrograde labeling. Mol Brain Res 1988;4:179-189.

25. Carlberg M, Gundlach AL, Mercer LD, Beart PM. Autoradiographic localization of cholecystokinin A and B receptors in rat brain using [125I]D-try25(nle28,31)-CCK 25-33S. Eur J Neurosci 1992;4:563-573.

26. Cawley NX, Chen H, Beinfeld MC, Loh YP. Specificity and kinetic studies on the cleavage of various prohormone mono- and paired-basic residue sites by yeast aspartic protease 3. J Biol Chem 1996;271:4168-4176.

27. Cawley NX, Pu L, Loh YP. Immunological identification and localization of yeast aspartic protease 3-like prohormone-processing enzymes in mammalian brain and pituitary. Endocrinology 1996;137:5135-5143.

28. Chang RSL, Lotti VJ. Biochemical and pharmacological characterization of an extremely potent and selective nonpeptide cholecystokinin antagonist. Proc Natl Acad Sci USA 1986;83:4923-4926.

29. Chang RSL, Lotti VJ, Monaghan RL, et al. A potent nonpeptide cholecystokinin antagonist selective for peripheral tissues isolated from Aspergillus alliaceus. Science 1985;230:177-180.

30. Charrier D, Dangoumau L, Puech AJ, Hamon M, Thiebot M-H. Failure of CCK receptor ligands to modify anxiety-related behavioural suppression in an operant conflict paradigm in rats. Psychopharmacol Bull 1995;121:127-134.

31. Cool DR, Normant E, Shen F, et al. Carboxypeptidase E is a regulated secretory pathway sorting receptor: genetic obliteration leads to endocrine disorder in the Cpefat mice. Cell 1997;88:73-83.

32. Cortes R, Arvidsson U, Schalling M, Ceccatelli S, Hokfelt T. In situ hybridization studies on mRNAs for cholecystokinin, calcitonin gene-related peptide and choline acetyltransferase in the lower brain stem, spinal cord and dorsal root ganglia of rat and guinea pig with special reference to motoneurons. J Chem Neuroanat 1990;3:467-485.

33. Cox CL, Huguenard JR, Prince DA. Cholecystokinin depolarizes rat thalamic reticular neurons by suppressing a K+ conductance. J Neurophysiol 1995;74:990

34. Crawley JN. Subtype-selective cholecystokinin receptor antagonists block cholecystokinin modulation of dopamine-mediated behaviors in the rat mesolimbic pathway. J Neurosci 1992;12:3380-3391.

35. Crawley JN, Corwin RL. Biological actions of cholecystokinin. Peptides 1994;15:731-755.

36. Curry SH, McCarthy D, Morris CF, Simpson-Heren L. Whole body autoradiography of CCK-8 in rats. Reg Peptides 1995;55:179-188.

37. Cutler NR, Sramek JJ, Kramer MS, Reines SA. Placebo-controlled study of a CCK-B antagonist in patients with panic disorder. Biol Psychiatry 1994;35:680

38. Dahl D. Systemically administered cholecystokinin affects an evoked potential in the hippocampal dentate gyrus. Neuropeptides 1987;10:165-173.

39. Davidowa H, Albrecht D, Gabriel H. Zippel U, Cholecystokinin affects the neuronal discharge mode in the rat lateral geniculate body. Brain Res Bull 1995;36:533-537.

40. Dawson GR, Rupniak NMJ, Iversen SD, et al. Lack of effect of CCKB receptor antagonists in ethological and conditioned animal screens for anxiolytic drugs. Psychopharmacology 1995;121:109-117.

41. Debonnel G, Gaudreau P, Quirion R, deMontigny C. Effects of long-term haloperidol treatment on the responsiveness of accumbens neurons to cholecystokinin and dopamine: electrophysiological and radioligand binding studies in the rat. J Neurosci 1990;10:469-478.

42. deMontigny C. Cholecystokinin tetrapeptide induces panic-like attacks in healthy volunteers. Arch Gen Psychiatry 1989;46:511-517.

43. Deschenes RJ, Haun RS, Funckes CL, Dixon JE. A gene encoding rat cholecystokinin. J Biol Chem 1985;260:1280-1286.

44. Deschenes RJ, Lorenz LJ, Haun RS, Roos BA, Collier KJ, Dixon JE. Cloning and sequence analysis of a cDNA encoding rat precholecystokinin. Proc Natl Acad Sci USA 1984;81:726-730.

45. Deschodt-Lanckman M, Strosberg AD. In vitro degradation of the c-terminal octapeptide of cholecystokinin by "enkephalinase A". FEBS Lett 1983;152:109-113.

46. Ding X, Bayer BM. Increase of CCK mRNA and peptide in different brain areas following acute and chronic administration of morphine. Brain Res 1993;625:139-144.

47. Ding X, Mocchetti I. Regulation of cholecystokinin mRNA content in rat striatum: a glutamatergic hypothesis. J Pharmacol Exp Ther 1992;263:368-373.

48. Ding X, Mocchetti I. Dopaminergic regulation of cholecystokinin mRNA content in rat striatum. Mol Brain Res 1992;12:77-83.

49. Dockray GJ, Gregory RA, Hutchinson JB. Isolation, structure, and biological activity of two cholecystokinin octapeptides from sheep brain. Nature 1978;264:568-570.

50. Dourish CT, O'Neil MF, Coughlan J, Kitchener MS, Hawley D, Iverson SD. The selective CCK-B receptor antagonist L-365,260 enhances morphine analgesia and prevents morphine tolerance in the rat. Eur J Pharmacol 1990;176:35-44.

51. Flood JF, Morley JE. Cholecystokinin receptors mediate enhanced memory retention produced by feeding and gastrointestinal peptides. Peptides 1989;10:809-813.

52. Flood JF, Smith GF, Morley JE. Modulation of memory processing by cholecystokinin:dependence on the vagus nerve. Science 1987;236:832-834.

53. Gaykema RP, Zaborsky L. Direct catecholaminergic-cholinergic interactions in the basal forebrain. II. Substantia nigra-ventral tegmental area projections to cholinergic terminals. J Comp Neurol 1996;374:555-577.

54. Gerhardt GA, Friedemann M, Brodie MS, et al. The effects of cholecystokinin (CCK-8) on dopamine-containing nerve terminals in the caudate nucleus and nucleus accumbens of the anesthetized rat: an in vivo electrochemical study. Brain Res 1989;499:157-163.

55. Gibbs J, Young RC, Smith GP. Cholecystokinin decreases food intake in rats. J Comp Physiol Psychol 1973;84:488-495.

56. Gregory RA, Tracy HJ. The constitution and properties of two gastrins extracted from hog antral mucosa. Gut 1964;5:103-117.

57. Gysling K, Allard LR, Beinfeld MC. Lithium preincubation stimulates the potassium-induced release of cholecystokinin from slices of cerebral cortex and caudato-putamen incubated in intro. Brain Res 1987;413:365-367.

58. Gysling K, Beinfeld MC. The regulation of cholecystokinin release from rat caudato-putamen in vitro. Brain Res 1987;407:110-116.

59. Handelmann G, Beinfeld MC, O'Donohue TL, Nelson JB, Brenneman DE. Extra-hippocampal projections of CCK neurons of the hippocampus and subiculum. Peptides 1983;4:331-334.

60. Hashimoto T, Yanagisawa N. Acute reduction and long-term improvement of chorea with ceruletide (cholecystokinin analogue). J Neurol Sci 1990;178-185.

61. Haun RS, Dixon JE. A transcriptional enhancer essential for the expression of the rat cholecystokinin gene contains a sequence identical to the -296 element of the human c-fos gene. J Biol Chem 1990;265:15455-15463.

62. Hendry SHC, Jones EG, DeFilipe J, Schmechel D, Brandon C, Emson PC. Neuropeptide containing neurons on the cerebral cortex are also GABAergic. Proc Natl Acad Sci USA 1984;81:6526-6530.

63. Herbert H, Saper CB. Cholecystokinin-,galanin-, and corticotropin-releasing factor-like immunoreactive projections from the nucleus of the solitary tract to the parabrachial nucleus in the rat. J Neurochem 1990;293:581-598.

64. Hernando F, Fuentes JA, Roques BP, Ruiz-Gayo M. The CCK B receptor antagonist L-365,260, elicits antidepressant-type effects in the forced-swim test in mice. Eur J Pharmacol 1994;261:257-263.

65. Hill DR, Cambell NJ, Shaw TM, Woodruff GN. Autoradiographic localization and biochemical characterization of peripheral type CCK receptors in rat CNS using highly selective nonpeptide CCK antagonists. J Neurosci 1987;7:2967-2976.

66. Hokfelt T, Rehfeld JF, Skirboll L, Ivemark B, Goldstein M, Markey K. Evidence for coexistence of dopamine and CCK in mesolimbic neurons. Nature 1980;285:474-478.

67. Hommer DW, Stoner G, Crawley JN, Paul SM, Skirboll LR. Cholecystokinin-dopamine coexistence: electrophysiological actions corresponding to cholecystokinin receptor subtype. J Neurosci 1986;6:3039-3043.

68. Honda T, Wada E, Battey JF, Wank SA. Differential gene expression of CCKA and CCKB receptors in the rat brain. Mol Cell Neurosci 1993;4:143-154.

69. Hughes J, Boden P, Costall B, et al. Development of a class of selective cholecystokinin type B receptor antagonists having potent anxiolytic activity. Proc Natl Acad Sci USA 1990;87:6728-6732.

70. Iwasaki Y, Kinoshita M, Ikeda K, Shiojima T. Palatal myoclonus following Behcet's disease ameliorated by ceruletide, a potent analogue of CCK octapeptide. J Neurol Sci 1991;105:12-13.

71. Jaffe DB, Aitken PG, Nadler JV. The effects of cholecystokinin and cholecystokinin antagonists on synaptic function in the CA1 region of the rat hippocampal slice. Brain Res 1987;415:197-203.

72. Jeftinija S, Miletic V, Randic M. Cholecystokinin octapeptide excites dorsal horn neurons both in vivo and in vitro. Brain Res 1981;213:231-236.

73. Kamilaris TC, Johnson EO, Calogero AE, et al. Cholecystokinin-octapeptide stimulates hypothalamic-pituitary-adrenal function in rats: role of corticotropin-releasing hormone. Endocrinol 1992;130:1764-1774.

74. Katsuura G, Shinohara S, Shintaku H, Eigyo M, Matsushita A. Protective effect of CCK-8 and ceruletide on glutamate-induced neuronal cell death in rat neuron cultures: possible involvement of CCK-B receptors. Neurosci Lett 1991;132:159-162.

75. Kihara T, Ikeda M, Miyazaki H, Matsushita A. Influence of potassium concentration in microdialysis perfusate on basal and stimulated striatal dopamine release: effect of ceruletide, a cholecystokinin-related peptide. J Neurochem 1993;61:1859-1864.

76. Kirouac GJ, Ganguly PK. Cholecystokinin-induced release of dopamine in the nucleus accumbens of the spontaneously hypertensive rat. Brain Res 1995;689:245-253.

77. Kissileff HR, Pi-Sunyer FX, Thornton J, Smith GP. Cholecystokinin-octapeptide (CCK-8) decreases food intake in man. Am J Clin Nutr 1981;34:154-160.

78. Kizer JS, Trospha A. A motif found in propeptides and prohormones that may target them to secretory vesicles. Biochem Biophys Res Commun 1991;174:586-592.

79. Kopin AS, Lee Y, McBride EW, et al. Expression cloning and characterization of the canine parietal cell gastrin receptor. Proc Natl Acad Sci USA 1992;89:3605-3609.

80. Kuljis RO, Karten HJ. Laminar organization of peptide-like immunoreactivity in the anuran optic tectum. J Comp Neurol 1982;212:188-201.

81. Kuribara H. Contrasting effects on methamphetamine sensitization of ceruletide, a cholecystokinin-like decapeptide and haloperidol. Psychopharmacology 1995;120:75-80.

82. Ladurelle N, Durieux C, Roques BP, Dauge V. Different modifications of the dopamine metabolism in the core and shell parts of the nucleus accumbens following CCK-A receptor stimulation in the shell region. Neurosci Lett 1994;178:5-10.

83. Lemaire I, Piot O, Roques BP, Bohme GA, Blanchard JC. Evidence for an endogenous cholecystokinin balance in social memory. Neuroreport 1992;3:929-932.

84. Liddle RA, Goldfine ID, Williams JA. Bioassay of plasma cholecystokinin in rats: effects of food, trypsin inhibitor and alcohol. Gastroenterology 1984;87:542-549.

85. Lindefors E, Brodin K, Stiller C-O, Persson H, Brodin E. Repeated electroconvulsive shock increases tachykinin and cholecystokinin mRNA expression in ventral periaqueductal gray. Neuroscience 1991;45:73-80.

86. Liu H, Chandler S, Beitz AJ, Shipley MT, Behbehani MM. Characterization of the effect of cholecystokinin (CCK) on neurons in the periaqueductal gray of the rat: immunocytochemical and in vivo and in vitro electrophysiological studies. Brain Res 1994;642:83-94.

87. Liu W, Shipley MT. Intrabulbar associational system in the rat olfactory bulb comprises cholecystokinin-containing tufted cells that synapse onto the dendrites of GABAergic granule cells. J Comp Neurol 1994;346:541-558.

88. Luckman SM, Hamamura M, Antonijevic I, Dye S, Leng G. Involvement of cholecystokinin receptor types in pathways controlling oxytocin secretion. Br J Pharm 1993;110:378-384.

89. Lund T, Geurts van Kessel AHM, Haun RS, Dixon JE. The genes for human gastrin and cholecystokinin are located on different chromosomes. Hum Genet 1986;73:77-80.

90. Mania-Farnell B, Merrill BJ, Konings PNM, Davis TP. Regulation of CCK mRNA in the human neuroepithelioma cell line SK-N-MCIXC in response to second messenger activators. FEBS Lett 1993;335:65-68.

91. Marshall FH, Barnes S, Hughes J, Woodruff GN, Hunter JC. Cholecystokinin modulates the release of dopamine from the anterior and posterior nucleus accumbens by two different mechanisms. J Neurochem 1991;56:917-922.

92. McDermott JR, Dodd PR, Edwardson JA, Hardy JA, Smith AI. pathway of inactivation of cholecystokinin (CCK-8) by synaptosomal fractions. Neurochem Int 1983;5:641-647.

93. McGuigan JL. Gastrin mucosal intracellular localization by immunofluorescence. Gastroenterology 1968;55:315-327.

94. Meek JL, Iadarola MJ, Giorgi O. Cholecystokinin turnover in brain. Brain Res 1983;276:375-378.

95. Meyer DK, Beinfeld MC, Brownstein MJ. Origin of cholecystokinin containing fibers in the rat caudatoputamen. Science 1982;215:187-188.

96. Mezey E, Reisine TD, Skirboll LR, Beinfeld MC, Kiss JZ. Role of cholecystokinin in corticotropin release: Coexistence with vasopressin and corticotropin-releasing factor in cells of the rat hypothalamic paraventricular nucleus. Proc Natl Acad Sci USA 1986; 83:3510-3512.

97. Micevych PE, Eckersell CB, Holland K, Smith A. Induction of CCK mRNA levels in the limbic-hypothalamic circuit: time course and site-specific effects of estrogen. J Neurobiol 1996;30:465-479.

98. Micevych PE, Yaksh TL, Go VLW. Studies on the opiate receptor-mediated inhibition of K+-stimulated cholecystokinin and substance P release from cat hypothalamus in vitro. Brain Res 1984;290:87-94.

99. Migaud M, Durieux C, Viereck J, Soroca-Lucas E, Fournie-Zaluski M-C, Roques BP. The in vivo metabolism of cholecystokinin (CCK-8) is essentially ensured by aminopeptidase A. Peptides 1996;17:601-607.

100. Migaud M, Roques BP, Durieux C. Effects of cholecystokinin octapeptide and BC 264, a potent and selective CCK-B antagonist on aspartate and glutamate release from rat hippocampal slice. Neuropharmacology 1994;33:737-743.

101. Migaud M, Roques BP, Durieux C. Evidence for a high-affinity uptake system for cholecystokinin octapeptide (CCK8) in rat cortical synaptosomes. Eur J Neurosci 1995;7:1074-1079.

102. Minabe Y, Ashby CRJ, Wang RY. The CCK-A receptor antagonist devazepide but not the CCK-B receptor antagonist L-365,260 reverses the effects of chronic clozapine and haloperidol on midbrain dopamine neurons. Brain Res 1991;549:151-154.

103. Miyoshi R, Kito S, Nomoto T. Cholecystokinin increases intracellular calcium concentration in cultured striatal neurons. Neuropeptides 1991;18:115-119.

104. Monstein H, Folkesson R. Phorbol 12-myristate-13-acetate (PMA) stimulates a differential expression of cholecystokinin (CCK) and c-fos mRNA in a human neuroblastoma cell line. FEBS Lett 1991;293:145-148.

105. Morino P, Mascagni F, McDonald A, Hokfelt T. Cholecystokinin corticostriatal pathway in the rat: evidence for bilateral origin from medial prefrontal cortical areas. Neurosci 1994;59:939-952.

106. Mutt V, Jorpes JE. Structure of porcine cholecystokinin pancreozymin I. Cleavage with thrombin and with trypsin. Eur J Biochem 1968;6:156-162.

107. Naggert JK, Fricker LD, Varlamov O, et al. Hyperproinsulinaemia in obese fat/fat mice associated with a carboxypeptidase E mutation which reduces enzyme activity. Nature genetics 1995;10:135-142.

108. Nevo I, Becker C, Hamon M, Benoliel JJ. Stress- and yohimbine-induced release of cholecystokinin in the frontal cortex of the freely moving rat: prevention by diazepam but not ondansetron. J Neurochem 1996;66:2041-2049.

109. Niehrs C, Huttner WB. Purification and characterization of tyrosylprotein sulfotransferase. EMBO J 1990;9:35-42.

110. Nielsen FC, Pedersen K, Hansen TVO, Rourke IJ, Rehfeld JF. Transcriptional regulation of the human cholecystokinin gene: composite action of upstream stimulatory factor, Sp1, and members of the CREB/ATF-AP-1 family of transcription factors. DNA Cell Biol 1996;15:53-63.

111. Oeth KM, Lewis DA. Cholecystokinin- and dopamine-containing mesencephalic neurons provide distinct projections to monkey prefrontal cortex. Neurosci Lett 1992;145:87-92.

112. Ogawa R, Itoh K, Kaneko T, Mizuno N. Co-existence of vasoactive intestinal polypeptide (VIP)- and cholecystokinin (CCK)-like immunoreactivities in thalamocortical neurons in the ventrolateral nucleus of the rat. Brain Res 1989;490:152-156.

113. Okubo Y, Suhara T, Suzuki K, et al. Decreased prefrontal dopamine D1 receptors in schizophrenia revealed by PET. Nature 1997; 385:634-636.

114. Olenik C, Meyer DK, Marksteiner J, Sperk G. Concentrations of mRNAs encoding for preprosomatostatin and preprocholecystokinin are increased after kainic acid-induced seizures. Synapse 1989;4:223-228.

115. Ondetti MA, Pluscec J, Sabo EF, Sheehan JT, Williams N. Synthesis of cholecystokinin-pancreozymin. I. The c-terminal dodecapeptide. J Am Chem Soc 1970;92:195-199.

116. Palacios JM, Savasta M, Mengod G. Does cholecystokinin colocalize with dopamine in the human substantia nigra? Brain Res 1989;488:369-375.

117. Palkovits M, Kiss JZ, Beinfeld MC, Brownstein MJ. Cholecystokinin in the hypothalamus-hypophyseal system. Brain Res 1984;299:186-189.

118. Paudice P, Raiteri M. Cholecystokinin release mediated by 5-HT3 receptors in rat cerebral cortex and nucleus accumbens. Br J Pharm 1991;103:1790-1794.

119. Penke B, Nyerges L. Solid-Phase synthesis of porcine cholecystokinin-33 in a new resin via FMOC-strategy. Peptide Res 1991;4:289-295.

120. Popoli P, Reggio R, Pezzola A, Scotti de Carolis A. The stimulation of cholecystokinin receptors in the rostral nucleus accumbens significantly antagonizes the EEG and behavioral effects induced by phencyclidine in rats. Psychopharmacology 1995;120:156-161.

121. Pratt JA, Brett RR. The benzodiazepine receptor inverse agonist FG 7142 induces cholecystokinin gene expression in rat brain. Neurosci Lett 1995;184:197-200.

122. Presti M, Gardner JD. Receptor antagonists for gastrointestinal peptides. Am J Physiol 1993;264:G399-G406.

123. Pullen RGL, Hodgson OJ. Penetration of diazepam and the nonpeptide CCK antagonist, L-364,718 into rat brain. J Pharm Pharmacol 1987;39:863-864.

124. Qureshi GA, Bednar I, Min Q, et al. Quantitation and identification of two cholecystokinin peptides, CCK-4 and CCK-8s, in rat brain by HPLC and fast atom bombardment mass spectrometry. Biomed Chromatogr 1993;7:251-255.

125. Radke JM, MacLennan AJ, Beinfeld MC, et al. Effects of short- and long-term haloperidol administration and withdrawal on cholecystokinin and neurotensin levels in the rat. Brain Res 1989;480:176-183.

126. Raiteri M, Bonanno G, Paudice P, Cavazzani P, Schmid G. Human brain cholecystokinin: release of cholecystokinin-like immunoreactivity (CCK-Li) from isolated cortical nerve endings and its modulation through GABAB receptors. J Pharmacol Exp Ther 1996;278:747-751.

127. Raiteri M, Paudice P, Vallebuona F. Inhibition by 5-HT3 receptor antagonists of release of cholecystokinin-like immunoreactivity from the frontal cortex of freely moving rats. Naunyn-Schmiedeberg's Arch Pharmacol 1993;347:111-114.

128. Rakovska A. Cholecystokinin-GABA interactions in rat striatum. Neuropeptides 1995;29:257-262.

129. Rasmussen K. CCK, Schizophrenia and anxiety. Ann N Y Acad Sci 1994;731:300-311.

130. Rasmussen K, Czachura JF, Stockton ME, Howbert JJ. Electrophysiological effects of diphenylpyrazolidinone cholecystokinin-B and cholecystokinin-A antagonists on midbrain dopamine neurons. J Pharmacol Exp Ther 1993;264:480

131. Rasmussen K, Stockton ME, Czachura JF, Howbert JJ. Cholecystokinin (CCK) and schizophrenia: the selective CCK b antagonist LY262691 decreases midbrain dopamine unit activity. Eur J Pharmacol 1991;209:135-138.

132. Rehfeld JF. 1992. CCK and anxiety: Introduction, Multiple cholecystokinin receptors in the CNS, ed. C. T. Dourish, S. J. Cooper, L. I. Iversen, Oxford, England: Oxford University Press.

133. Reisine T, Jensen R. Cholecystokinin-8 stimulates adrenocorticotropin release from anterior pituitary cells. J Pharmacol Exp Ther 1986; 236:621-626.

134. Roques BP, Noble F. Association of enkephalin catabolism inhibitors and CCK-B antagonists: a potential use in the management of pain and opioid addiction. Neurochem Res 1996;21:1397-1410.

135. Rose C, Camus A, Schwartz JC. Protection by serine peptidase inhibitors of endogenous cholecystokinin released from brain slices. Neuroscience 1989;29:583-594.

136. Rose C, Vargas F, Facchinetti P, et al. Characterization and inhibition of a cholecystokinin-inactivating serine peptidase. Nature 1996;380:403-409.

137. Schalling M, Friberg K, Bird E, et al. Presence of cholecystokinin mRNA in dopamine cells in the ventral mesencephalon of a human with schizophrenia. Acta Physiol Scand 1989;137:467-468.

138. Schalling M, Friberg K, Seroogy K, et al. Analysis of expression of cholecystokinin in dopamine cells in the ventral mesencephalon of several species and in humans with schizophrenia. Proc Natl Acad Sci USA 1990;87:8427-8431.

139. Schick RR, Reilly WM, Roddy DR, Yaksh TL, Go VLW. Neuronal cholecystokinin-like immunoreactivity is postprandially released from primate hypothalamus. Brain Res 1987;418:20-26.

140. Schick RR, Schusdziarra V, Yaksh TL, Go VLW. Brain regions where cholecystokinin exerts its effect on satiety. Ann N Y Acad Sci 1994;731:242-253.

141. Schiffmann SN, Teugels E, Halleux P, Menu R, Vanderhaeghen J-J. Cholecystokinin mRNA detection in rat spinal cord motoneurons but not in dorsal root ganglia neurons. Neurosci Lett 1991;123:123-126.

142. Schiffmann SN, Vanderhaeghen J-J. Lesion of the nigrostriatal pathway induces cholecystokinin mRNA expression in the rat striatum. An in situ hybridization histochemical study. Neuroscience 1992;50:551-557.

143. Schiffmann SN, Vanderhaeghen J-J. Caffeine regulates neurotensin and cholecystokinin messenger mRNA expression in the rat striatum. Neurosci 1993;54:681-689.

144. Schreiber H, Stolz-Born G, Pietrowsky R, Kornhuber HH, Fehm HL, Born J. Improved event-related potential signs of selective attention after the administration of the cholecystokinin analog ceruletide in healthy persons. Biol Psych 1995;37:702-712.

145. Seidah NG, Marcinkiewicz M, Benjannet S, et al. Cloning and primary sequence of a mouse candidate prohormone convertase PC 1 homologous to PC 2, furin and Kex2. Distinct chromosomal localization and messenger RNA distribution in brain and pituitary compared to PC 2. Mol Endocrinol 1991;5:111-122.

146. Senatorov VV, Trudeau VL, Hu B. Expression of cholecystokinin mRNA in corticothalamic projecting neurons: a combined fluorescence in situ hybridization and retrograde tracing study in the ventrolateral thalamus of the rat. Mol Brain Res 1995;30:87-96.

147. Silver AJ, Morley JE. Role of CCK in regulation of food intake. Prog Neurobiol 1991;36:23-34.

148. Simerly RB, Swanson LW. Castration reversibly alters levels of cholecystokinin immunoreactivity within cells of three interconnected sexually dimorphic forebrain nuclei in the rat. Proc Natl Acad Sci USA 1987;84:2087-2091.

149. Singh L, Lewis AS, Field MJ, Hughes J, Woodruff GN. Evidence for an involvement of the brain cholecystokinin B receptor in anxiety. Proc Natl Acad Sci USA 1991;88:1130-1133.

150. Skirboll L, Hokfelt T, Dockray GJ, Rehfeld JF, Brownstein MJ, Cuello C. Evidence for periaqueductal cholecystokinin-substance P neurons projecting to the spinal cord. J Neurosci 1982;3:1151-1157.

151. Skirboll LR, Grace AA, Hommer DW, et al. Peptide-monoamine coexistence: studies on the actions of cholecystokinin-like peptides on the electrical activity of midbrain dopamine neurons. Neuroscience 1981;6:2111-2124.

152. Smeekens SP, Avruch AS, LaMendola J, Chan SJ, Steiner DF. Identification of a cDNA encoding a second putative prohormone convertase related to PC2 in AtT-20 cells and islets of Langerhans. Proc Natl Acad Sci USA 1991;88:340-344.

153. Smeekens SP, Steiner DF. Identification of a human insulinoma cDNA encoding a novel mammalian protein structurally related to the yeast dibasic processing protease KEX2. J Biol Chem 1990;265:2997-3000.

154. Smith GP, Jerome C, Cushin BJ, Eterno R, Simansky KJ. Abdominal vagotomy blocks the satiety effect of cholecystokinin in the rat. Science 1981;213:1036-1037.

155. Snyder GL, Fisone G, Morino P, et al. Regulation by the neuropeptide cholecystokinin (CCK-8S) of protein phosphorylation in the neostriatum. Proc Natl Acad Sci USA 1993; 90:11277-11281.

156. Stallone D, Nicolaidis S, Gibbs J. Cholecystokinin-induced anorexia depends on serotonergic function. Am J Physiol 1989;256:R1138-R1141.

157. Stanfa L, Dickenson A, Xu X, Wisenfeld-Hallin Z. Cholecystokinin and morphine analgesia: variations on a theme. TIPS 1994;15:65-66.

158. Tamura Y, Sato Y, Akaike A, Shiomi H. Mechanism of cholecystokinin-induced protection of cultured cortical neurons against N-methyl-d-aspartate receptor-mediated glutamate cytotoxicity. Brain Res 1992;592:317-325.

159. Taquet H, Plachot JJ, Pohl M, et al. Increased calcitonin gene-related peptide- and cholecystokinin-like immunoreactivities in spinal motoneurones after dorsal rhizotomy. J Neural Transm 1992;88:127-141.

160. Vaccarino FJ, Vaccarino AL. Antagonism of cholecystokinin function in the rostral and caudal nucleus accumbens: differential effects on brain stimulation reward. Neurosci Lett 1989;97:151-156.

161. Van Der Kooy D, Hunt SP, Steinbusch HVM, Verhofstad AJ. Separate populations of cholecystokinin and 5-hydroxytryptamine-containing neuronal cells in the rat dorsal raphe, and their contribution to the ascending raphe projections. Neurosci Lett 1981;26:25-30.

162. Vanderhaeghen JJ, Signeau JC, Gepts LO. New peptide in the vertebrate CNS reacting with gastrin antibodies. Nature 1975;257:604-605.

163. Varro A, Desmond H, Pauwels S, Gregory H, Young J, Dockray GJ. The human gastrin precursor. Characterization of phosphorylated forms and fragments. Biochem J 1988;256:951-957.

164. Varro A, Nemeth J, Bridson J, Lonovics J, Dockray GJ. Modulation of posttranslational processing of gastrin precursor in dogs. Am J Physiol 1990;258:G904-G909.

165. Vickroy TW, Bianchi BR, Kerwin JF, Kopecka H, Nadzan AM. Evidence that type A CCK receptors facilitate dopamine efflux in rat brain. Eur J Pharmacol 1988;152:371-372.

166. Viereck JC, Beinfeld MC. Purification and characterization of an endoprotease from rat brain synaptosomes which generates CCK 8 from CCK 33. J Biol Chem 1992;267:19475-19481.

167. Wang W, Beinfeld MC. Cleavage of CCK 33 by recombinant PC 2 in vitro. Biochem Biophys Res Commun 1997;231:149-152.

168. Wang Y, Perng SL, Lin JC, Tsao WL. Cholecystokinin facilitates methamphetamine-induced dopamine overflow in rat striatum and fetal ventral mesencephalic grafts. Exp Neurol 1994;130:279-287.

169. Wang Z, Rao Z, Shi J. Tyrosine hydroxylase-, neurotensin- or cholecystokinin-containing neurons in the nucleus tractus solitarii send projection fibers to the nucleus accumbens in the rat. Brain Res 1992;578:347-350.

170. Wank SA, Harkins R, Jensen RT, Shapira H, DeWeerth A, Slattery T. Purification, molecular cloning, and functional expression of the cholecystokinin receptor from rat pancreas. Proc Natl Acad Sci USA 1992;89:3125-3129.

171. Wu T, Wang H. Gaq/11 mediates cholecystokinin activation of the cationic conductance in rat substantia nigra dopaminergic neurons. J Neurochem 1996;66:1060-1066.

172. Xu XJ, Puke MJ, Verge VM, Wisenfeld-Hallin Z, Hughes J, Hokfelt T. Up-regulating of cholecystokinin in primary sensory neurons is associated with morphine insensitivity in experimental neuropathic pain in the rat. Neurosci Lett 1993;152:129-132.

173. Yaksh TL, Furui T, Kanawati IS, Go VLW. Release of cholecystokinin from rat cerebral cortex in vivo: role of GABA and glutamate receptor systems. Brain Res 1987;406:207-214.

174. Yim CC, Mogenson GJ. Electrophysiological evidence of modulatory interaction between dopamine and cholecystokinin in the nucleus accumbens. Brain Res 1991;541:12-20.

175. Yoon JY, Beinfeld MC. A mouse intestinal tumor cell line, STC-1, expresses CCK, PC1, and PC2 mRNA, processes pro CCK to CCK 8, and displays cAMP regulated release. Endocrine 1994;2:973-977.

176. Zaborsky L, Alheid GF, Beinfeld MC, Eiden LE, Heimer L, Palkovits M. Cholecystokinin innervation of the ventral striatum: a morphological and radioimmunological study. Neurosci J 1985;14:427-453.

177. Zaborsky L, Beinfeld MC, Palkovits M, Heimer L. Brainstem projection to the hypothalamic ventromedial nucleus in the rat: CCK-containing long ascending pathway. Brain Res 1984; 303:225-232.

Back to Chapter

published 2000