Electrophysiology of Serotonin Receptor Subtypes and Signal Transduction Pathways

G. K. Aghajanian
Departments of Psychiatry and Pharmacology
Yale School of Medicine and the Abraham Ribicoff Research Facilities
Connecticut Mental Health Center
New Haven, Connecticut 06508.

REFERENCES

1. Aghajanian GK. Serotonin-induced inward current in rat facial motoneurons: evidence for mediation by G proteins but not protein kinase C. Brain Res 1990;524:171–174.

2. Aghajanian GK, Sprouse JS, Rasmussen K. Physiology of the midbrain serotonin system. In: Meltzer HY, ed. Psychopharmacology: The third generation of progress. New York: Raven Press, 1987; 141–149.

3. Aghajanian GK, Rasmussen K. Intracellular studies in the facial nucleus illustrating a simple new method for obtaining viable motoneurons in adult rat brain slices. Synapse 1989;3:331–338.

4. Andrade R, Chaput Y. 5-HT4-like receptors mediate the slow excitatory response to serotonin in the rat hippocampus. J Pharmacol Exp Ther 1991;257:930–937.

5. Andrade R, Nicoll RA. Pharmacologically distinct actions of serotonin on single pyramidal neurones of the rat hippocampus recorded in vitro. J Physiol (Lond) 1987;394:99–124.

6. Araneda R, Andrade R. 5-Hydroxytryptamine2 and 5-hydroxytryptamine1A receptors mediate opposing responses on membrane excitability in rat association cortex. Neuroscience 1991;40:399–412.

7. Ashby CR Jr, Edwards E, Harkins K, Wang RY. Characterization of 5-hydroxytryptamine-3 receptors in the medial prefrontal cortex: a microiontophoretic study. Eur J Pharmacol 1989;173:193–196.

8. Ashby CR Jr, Jiang LH, Kasser RJ, Wang RY. Electrophysiological characterization of 5-hydroxytryptamine-2 receptors in rat medial prefrontal cortex. J Pharmacol Exp Ther 1989;252:171–178.

9. Beck SG. 5-Carboxyamidotryptamine mimics only the 5-HT elicited hyperpolarization of hippocampal pyramidal cells via 5-HT1A receptor. Neurosci Lett 1989;99:101–106.

10. Blier P, Lista A, deMontigny C. Differential properties of pre-and postsynaptic 5-hydroxytryptamine1A receptors in the dorsal raphe and hippocampus. I. Effect of spiperone. J Pharmacol Exp Ther 1992;265:7–15.

11. Blier P, Steinberg S, Chaput Y, deMontigny C. Electrophysiological assessment of putative antagonists of 5-hydroxytryptamine receptors: a single-cell study in the dorsal raphe nucleus. Can J Physiol Pharmacol 1989;67:98–105.

13. Bobker DH, Williams JT. Serotonin agonists inhibit synaptic potentials in the rat locus ceruleus in vitro via 5-hydroxytryptamine1A and 5-hydroxytryptamine1B receptors. J Pharmacol Exp Ther 1989; 250:37–43.

14. Bobker DH, Williams JT. Serotonin augments the cationic current Ih in central neurons. Neuron 1989;2:1535–1540.

15. Bobker DH, Williams JT. Serotonin-mediated inhibitory postsynaptic potential in guinea-pig prepositus hypoglossi and feedback inhibition by serotonin. J Physiol (Lond) 1990;422:447–462.

16. Bockaert J, Fozard JR, Dumuis A, Clarke DE. The 5-HT4 receptor: a place in the sun. Trends Pharmacol Sci 1992;13:141–145.

17. Carter BD, Medzihradsky F. Go mediates the coupling of the m opioid receptor to adenylyl cyclase in cloned neural cells and brain. Proc Natl Acad Sci USA 1993;90:4062–4066.

18. Chalmers DT, Watson SJ. Comparative anatomical distribution of 5-HT1A receptor mRNA and 5-HT1A binding in rat brain—a combined in situ hybridisation/in vitro receptor autoradiographic study. Brain Res 1991;561:51–60.

19. Chaput Y, Araneda RC, Andrade R. Pharmacological and functional analysis of a novel serotonin receptor in the rat hippocampus. Eur J Pharmacol 1990;182:441–456.

20. Charlety PJ, Aston-Jones G, Akaoka H, Buda M, Chouvet G. 5-HT decreases glutamate-evoked activation of locus coeruleus neurons through 5-HT 1A receptors. Neurophysiology 1991;421–426.

21. Clement HW, Gemsa D, Wesemann W. Serotonin-norepinephrine interactions: a voltammetric study on the effect of serotonin receptor stimulation followed in the N. raphe dorsalis and the locus coeruleus of the rat. J Neural Trans 1992;88:11–23.

22. Crain SM, Crain B, Makman MH. Pertussis toxin blocks depressant effects of opioid, monoaminergic and muscarinic agonists on dorsal-horn network responses in spinal cord-ganglion cultures. Brain Res 1987;400:185–190.

23. Darrow EJ, Strahlendorf HK, Strahlendorf JC. Response of cerebellar Purkinje cells to serotonin and the 5-HT1A agonists 8-OH-DPAT and ipsapirone in vitro. Eur J Pharmacol 1990;175:145–153.

24. Davies MF, Deisz RA, Prince DA, Peroutka SJ. Two distinct effects of 5-hydroxytryptamine on single cortical neurons. Brain Res 1987;423:347–352.

25. Fagni L, Dumuis A, Sebben M, Bockaert J. The 5-HT4 receptor subtype inhibits K+ current in colliculi neurones via activation of a cyclic AMP-dependent protein kinase. Br J Pharmacol 1992; 105:973–979.

26. Garratt JC, Alreja M, Aghajanian GK. LSD has high efficacy relative to serotonin in enhancing the cationic current Ih: intracellular studies in rat facial motoneurons. Synapse 1993;13:123–134.

27. Gellman RL, Aghajanian GK. Pyramidal cells in piriform cortex receive a convergence of inputs from monoamine activated GABAergic interneurons. Brain Res 1993;600:63–73.

28. Glaum SR, Brooks PA, Spyer KM, Miller RJ. 5-Hydroxytryptamine-3 receptors modulate synaptic activity in the rat nucleus tractus solitarius in vitro. Brain Res 1992;589:62–68.

29. Innis RB, Nestler EJ, Aghajanian GK. Evidence for G protein mediation of serotonin- and GABAB-induced hyperpolarization of rat dorsal raphe neurons. Brain Res 1988;459:27–36.

30. Joels M, Shinnick-Gallagher P, Gallagher JP. Effect of serotonin and serotonin analogues on passive membrane properties of lateral septal neurons in vitro. Brain Res 1987;417:99–107.

31. Larkman PM, Kelly JS. Ionic mechanisms mediating 5-hydroxytryptamine- and noradrenaline-evoked depolarization of adult rat facial motoneurones. J Physiol (Lond) 1992;456:473–490.

32. Larkman PM, Penington NJ, Kelly JS. Electrophysiology of adult rat facial motoneurones: the effect of serotonin (5-HT) in a novel in vitro brainstem slice. J Neurosci Methods 1989;28:133–146.

33. Leslie RA, Moorman JM, Coulson A, Grahame-Smith DG. Serotonin2/1C receptor activation causes a localized expression of the immediate-early gene c-fos in rat brain: evidence for involvement of dorsal raphe nucleus projection fibres. Neuroscience 1993;53:457–463.

34. Lovenberg TW, Baron BM, de Lecea L, Miller JD, Prosser RA, Rea MA, Foye PE, Racke M, Slone AL, Siegel BW, Danielson PE, Sutcliffe JG, Erlander MG. A novel adenylyl cyclase-activating serotonin receptor (5-HT7) implicated the regulation of mammalian circadian rhythms. Neuron 1993;11:449–458.

35. Luebke JI, Greene RW, Semba K, Kamond A, McCarley RW, Reiner PB. Serotonin hyperpolarizes cholinergic low-threshold burst neurons in the rat laterodorsal tegmental nucleus in vitro. Proc Natl Acad Sci USA 1992;89:743–747.

36. Lum JT, Piercey MF. Electrophysiological evidence that spiperone is an antagonist of 5-HT1A receptors in the dorsal raphe nucleus. Eur J Pharmacol 1987;149:9–15.

37. Maricq AV, Peterson AS, Brake AJ, Myers RM, Julius D. Primary source and functional expression of the 5-HT3 receptor, a serotonin-gated ion channel. Science 1991;254:432–437.

38. McCormick DA, Wang Z. Serotonin and noradrenaline excite GABAergic neurones of the guinea-pig and cat nucleus reticularis thalami. J Physiol (Lond) 1991;442:235–255.

39. McCormick DA, Williamson A. Convergence and divergence of neurotransmitter action in human cerebral cortex. Proc Natl Acad Sci USA 1989;86:8098–8102.

40. Mengod G, Nguyen H, Lee H, Waeber C, Lubbert H, Palacios JM. The distribution and cellular localization of 5-HT1C receptor mRNA in the rodent brain examined by in situ hybridization histochemistry. Comparison with receptor binding distribution. Neuroscience 1990;35:577–592.

41. Mengod G, Pompeiano M, Martinez-Mir MI, Palacios JM. Localization of the mRNA for the 5-HT2 receptor by in situ hybridization histochemistry. Correlation with the distribution of receptor sites. Brain Res 1990;524:139–143.

42. Miquel MC, Doucet E, Boni C, El Mestikawy S, Matthiessen L, Daval G, Verge D, Hamon M. Central serotonin1A receptors: respective distributions of encoding mRNA, receptor protein and binding sites by in situ hybridization histochemistry, radioimmunohistochemistry and autoradiographic mapping in the rat brain. Neurochem Int 1991;19:453–465.

43. Monsma FJ Jr, Shen Y, Ward RP, Hamblin MW, Sibley DR. Cloning and expression of a novel serotonin receptor with high affinity for tricyclic psychotropic drugs. Mol Pharmacol 1993;43:320–327.

44. Nedergaard S, Flatman JA, Engberg I. Excitation of substantia nigra pars compacta neurones by 5-hydroxytryptamine in vitro. NeuroReport 1991;2:329–332.

45. Newberry NR. 5-HT1A receptors activate a potassium conductance in rat ventromedial hypothalamic neurones. Eur J Pharmacol 1992; 210:209–212.

46. Newberry NR, Priestley T. A 5-HT1-like receptor mediates a pertussis toxin-sensitive inhibition of rat ventromedial hypothalamic neurons in vitro. Br J Pharmacol 1988;95:6–8.

47. North RA, Uchimura N. 5-Hydroxytryptamine acts at 5-HT2 receptors to decrease potassium conductance in rat nucleus accumbens neurones. J Physiol (Lond) 1989;417:1–12.

48. Pape HC, McCormick DA. Noradrenaline and serotonin selectively modulate thalamic burst firing by enhancing a hyperpolarization-activated cation current. Nature 1989;340:715–718.

49. Penington NJ, Kelly JS. Serotonin receptor activation reduces calcium current in an acutely dissociated adult central neuron. Neuron 1990;4:751–758.

50. Pennington NJ, Kelly JS, Fox AP. A study of the mechanism of Ca2+ current inhibition produced by serotonin in rat dorsal raphe neurons. J Neurosci 1991;11:3594–3609.

51. Pompeiano M, Palacios JM, Mengod G. Distribution and cellular localization of mRNA coding for 5-HT1A receptor in the rat: correlation with receptor binding. J Neurosci 1992;12:440–453.

52. Rahman S, Neuman RS. Activation of 5-HT2 receptors facilitates depolarization of neocortical neurons by N-methyl-D-aspartate. Eur J Pharmacol 1993;231:347–354.

53. Rasmussen K, Aghajanian GK. Potency of antipsychotics in reversing the effects of a hallucinogenic drug on locus coeruleus neurons correlates with 5-HT2 binding affinity. Neuropsychopharmacology 1988;1:101–107.

54. Rasmussen K, Aghajanian GK. Serotonin excitation of facial motoneurons: receptor subtype characterization. Synapse 1990;5:324–332.

55. Ropert N. Inhibitory action of serotonin in CA1 hippocampal neurons in vitro. Neuroscience 1988;26:69–81.

56. Ropert N, Guy N. Serotonin facilitates GABAergic transmission in the CA1 region of rat hippocampus in vitro. J Physiol (Lond) 1991;441:121–136.

57. Scroggs RS, Anderson EG. 5-HT1 receptor agonists reduce the Ca++ component of sensory neuron action potentials. Eur J Pharmacol 1990;178:229–232.

58. Segal M. Serotonin attenuates a slow inhibitory postsynaptic potential in rat hippocampal neurons. Neuroscience 1990;36:631–641.

59. Segal M, Azmitia EC, Whitaker-Azmitia PM. Physiological effects of selective 5-HT1A and 5-HT1B ligands in rat hippocampus: comparison to 5-HT. Brain Res 1989;502:67–74.

60. Sheldon PW, Aghajanian GK. Serotonin (5-HT) induces IPSPs in pyramidal layer cells of rat piriform cortex: evidence for the involvement of a 5-HT2-activated interneuron. Brain Res 1990;506:62–69.

61. Sheldon PW, Aghajanian GK. Excitatory responses to serotonin (5-HT) in neurons of the rat piriform cortex: evidence for mediation by 5-HT1C receptors in pyramidal cells and 5-HT2 receptors in interneurons. Synapse 1991;9:208–218.

62. Smrcka AV, Hepler JR, Brown KO, Sternweis PC. Regulation of polyphosphoinositide-specific phospholipase C activity by purified Gq. Science 1991;251:804–808.

63. Stevens DR, McCarley RW, Greene RW. Serotonin1 and serotonin2 receptors hyperpolarize and depolarize separate populations of medial pontine reticular formation neurons in vitro. Neuroscience 1992;47:545–553.

64. Sugita S, Shen KZ, North RA. 5-Hydroxytryptamine is a fast excitatory transmitter at 5-HT3 receptors in rat amygdala. Neuron 1992;8:199–203.

65. Tani A, Yoshihara Y, Mori K. Increase in cytoplasmic free Ca2+ elicited by noradrenalin and serotonin in cultured local interneurons of mouse olfactory bulb. Neuroscience 1992;49:193–199.

66. Todorovic S, Anderson EG. 5-HT2 and 5-HT3 receptors mediate two distinct depolarizing responses in rat dorsal root ganglion neurons. Brain Res 1990;511:71–79.

67. White SR, Fung SJ. Serotonin depolarizes cat spinal motoneurons in situ and decreases motoneuron afterhyperpolarizing potentials. Brain Res 1989;502:205–213.

68. Williams JT, Colmers WF, Pan ZZ. Voltage- and ligand-activated inwardly rectifying currents in dorsal raphe neurons in vitro. J Neurosci 1988;8:3499–3506.

69. Yakel JL, Jackson MB. 5-HT3 receptors mediate rapid responses in cultured hippocampus and a clonal cell line. Neuron 1988;1:615–621.

70. Yakel JL, Shao XM, Jackson MB. The selectivity of the channel coupled to the 5-HT3 receptor. Brain Res 1990;533:46–52.

71. Yamazaki J, Fukuda H, Nagao T, Ono H. 5-HT2/5-HT1C receptor-mediated facilitatory action on unit activity of ventral horn cells in rat spinal cord slices. Eur J Pharmacol 1992;220:237–242.

72. Zgombick JM, Beck SG, Mahle CD, Craddock-Royal B, Maayani S. Pertussis toxin-sensitive guanine nucleotide-binding protein(s) couple adenosine A1 and 5-hydroxytryptamine1A receptors to the same effector system in rat hippocampus: biochemical and electrophysiological studies. Mol Pharmacol 1989;35:484–494.

Back to Chapter

published 2000