Mesocorticolimbic Dopaminergic Neurons

Functional and Regulatory Roles

M. Le Moal
Psychobiologie des Comportements Adaptatifs
INSERM—Université de Bordeaux II
Bordeaux 33077, France.


REFERENCES

1. Alexander GE, De Long MR, Strick PL. Parallel organization of functionally segregated circuits linking basal ganglia and cortex. Annu Rev Neurosci 1986;9:357–381.

2. Blanc G, Herve D, Simon H, Lisoprawski A, Glowinski J, Tassin JP. Response to stress of mesocortico-frontal dopaminergic neurones in rats after long-term isolation. Nature 1980;284:265–267.

3. Brozoski TJ, Brown RM, Rosvold HE, Goldman PS. Cognitive deficit caused by regional depletion of DA in prefrontal cortex of rhesus monkey. Science 1979;205:929–931.

4. Cador M, Robbins JW, Everitt BJ, Simon H, Le Moal M, Stinus L. Limbic–striatal interactions in reward-related processes: modulation by the dopaminergic system. In: Willner P, Sheel-Krüger J, eds. The mesolimbic dopamine system: from motivation to action. John Wiley & Sons, 1991;225–250.

5. Carlson JN, Herrick KF, Baird JL, Glick SD. Selective enhancement of dopamine utilization in the rat prefrontal cortex by food deprivation. Brain Res 1987;400:200–203.

6. D'Angio M, Serrano A, Rivy JP, Scatton B. Tail-pinch stress increases extracellular DOPAC levels (as measured by in vivo voltammetry) in the rat nucleus accumbens but not frontal cortex: antagonism by diazepam and zolpidem. Brain Res 1987;409:169–174.

7. Deminiere JM, Taghzouti K, Tassin JP, Le Moal M, Simon H. Increased sensitivity to amphetamine and facilitation of amphetamine self-administration after 6-hydroxydopamine lesions of the amygdala. Psychopharmacology 1988;94:232–236.

8. Diaz-Palarea MD, Gonzalez MC, Rodriguez M. Behavioral lateralization in the T-maze and monoaminergic brain asymmetries. Physiol Behav 1987;40:785–789.

9. Gaffori O, Le Moal M. Disruption of maternal behavior and appearance of cannibalism after ventral mesencephalic tegmentum lesions. Physiol Behav 1979;23:317–323.

10. Galey D, Jaffard R, Le Moal M. Alternation behavior, spatial discrimination and reversal after electrocoagulation of the ventral mesencephalic tegmentum in the rat. Behav Neural Biol 1979;26:81–88.

11. Glick SD, Hinds PA, Carlson JN. Food deprivation and stimulant self-administration in rats: difference between cocaine and d-amphetamine. Psychopharmacology 1987;91:372–374.

12. Goldman-Rakic PS. Dopamine-mediated mechanisms of the prefrontal cortex. Semin Neurosci 1992;4:149–159.

13. Gustafsson JA, Carlstedt-Duke J, Poellinger L, et al. Biochemistry, molecular biology and physiology of the glucocorticoid receptor. Endocr Rev 1987;8:185–234.

14. Iversen SD. Brain dopamine system and behavior. In: Iversen LL, Iversen SD, Snyder SH, eds. Handbook of psychopharmacology, vol 8. New York: Plenum Press, 1977;334–384.

15. Kalivas PW. Neurotransmitter regulation of dopoamine neurons in the ventral tegmental area. Brain Res Rev 1993;18:75–113.

16. Kazandjian A, Spyraki C, Papadopoulou Z, Sfikakis A, Varonos DD. Behavioral and biochemical effects of haloperidol during the oestrous cycle of the rat. Neuropharmacology 1988;27:73–78.

17. Koob GF, Goeders N. Neuroanatomical substrates of drug self-administration. In: Liebman JM, Cooper SJ, eds. Neuropharmacological basis of reward, vol 6. New York: Oxford University Press, 1989;214–264.

18. Koob GF, Riley SJ, Smith SC, Robbins TW. Effects of 6-hydroxydopamine lesions of the nucleus accumbens septi and olfactory tubercle on feeding, locomotor activity, and amphetamine anorexia in the rat. J Comp Physiol Psychol 1978;92:917–927.

19. Koob GF, Simon H, Herman JP, Le Moal M. Neuroleptic-like disruption of the conditioned avoidance response requires destruction of both the mesolimbic and nigrostriatal dopamine systems. Brain Res 1984;303:319–329.

20. Koob GF, Stinus L, Le Moal M. Hyperactivity and hypoactivity produced by lesions to the mesolimbic DA system. Behav Brain Res 1981;3:341–359.

21. Le Moal M, Simon H. Mesocorticolimbic dopaminergic network: functional and regulatory roles. Physiol Rev 1991;71:155–234.

22. Louilot A, Le Moal M, Simon H. Opposite influences of dopaminergic pathways to the prefrontal cortex or the septum on the dopaminergic transmission in the nucleus accumbens. An in vivo voltammetric study. Neuroscience 1989;29:45–56.

23. Lyon M, Robbins TW. The action of central nervous system stimulant drugs: a general theory concerning amphetamine effects. In: Essman W, Valzelli L, eds. Current developments in psychopharmacology, vol 2. New York: Spectrum Publications, 1975;79–163.

24. Mittleman GM, Castaneda E, Robinson TE, Valenstein ES. The propensity for nonregulatory ingestive behaviour is related to differences in dopamine systems: behavioural and biochemical evidence. Behav Neurosci 1986;100:213–220.

25. Mogenson GJ. Limbic-motor integration. In: Sprague J, Epstein AN, eds. Progress in psychobiology and physiological psychology, vol. 12. New York: Academic Press, 1987;117–170.

26. Moore RY, Bloom FE. Central catecholamine neuron system: anatomy and physiology of the dopamine systems. Annu Rev Neurosci 1978;1:129–169.

27. Nauta WJH. Hippocampal projections and related neural pathways to the midbrain in the cat. Brain 1958;81:319–340.

28. Nisenbaum ES, Stricker EM, zigmond MJ, Berger TW. Long-term effects of dopamine-depleting brain lesions on spontaneous activity of type II striatal neurons: relation to behavioral recovery. Brain Res 1986;398:221–230.

29. O'Brien CP, Ehrman RN, Terns JM. Classical conditioning in human opioid dependence. In: Goldberg SR, Stolerman IP, eds. Behavioral analysis of drug dependence. London: Academic Press, 1986;329.

30. Oades RD, Rivet JM, Taghzouti K, Kharouby M, Simon H, Le Moal M. Catecholamines and conditioned blocking: effects of ventral tegmental, septal and frontal 6-hydroxydopamine lesions in rats. Brain Res 1987;406:136–146.

31. Oades RD, Taghzouti K, Rivet JM, Simon H, Le Moal M. Locomotor activity in relation to dopamine and noradrenaline in the nucleus accumbens, septal and frontal areas: a 6-hydroxydopamine study. Neuropsychobiology 1986;16:37–42.

32. Papp M, Bal A. Separation of the motivational and motor consequences of 6-hydroxydopamine lesions of the mesolimbic or nigrostriatal system in rats. Behav Brain Res 1987;23:221–229.

33. Phillips AG, Jakubovic A, Fibiger HC. Increased in vivo tyrosine hydroxylase activity in rat telencephalon produced by self-stimulation of the ventral tegmental area. Brain Res 1987;402:109–116.

34. Piazza PV, Deminiere J-M, Le Moal M, Simon H. Factors that predict individual vulnerability to amphetamine self-administration. Science 1989;245:1511–1513.

35. Piazza PV, Rouge-Pont F, Deminiere JM, Kharouby M, Le Moal M, Simon H. Dopamine activity is reduced in the prefrontal cortex and increased in the nucleus accumbens of rats predisposed to develop amphetamine self-administration. Brain Res 1991;567:169–174.

36. Porrino LJ, Esposito RU, Seeger TF, Crane AM, Pert A, Sokoloff L. Metabolic mapping of the brain during rewarding self-stimulation. Science 1984;224:306–309.

37. Post RM, Contel NR. Human and animal studies of cocaine: implications for development of behavioral pathology. In: Creese I, ed. Stimulants: neurochemical, behavioral and clinical perspectives. New York: Raven Press, 1983;169–203.

38. Post RM, Weiss SRB, Pert A. The role of context and conditioning in behavioral sensitization to cocaine. Psychopharmacol Bull 1987;23:425–429.

39. Robbins TW, Everitt BJ. Functional studies of the central catecholamines. Int Rev Neurobiol 1982;23:303–365.

40. Robinson TE, Becker JB. Enduring changes in brain and behavior produced by chronic amphetamine administration: a review and evaluation of animal models of amphetamine psychosis. Brain Res Rev 1986;11:157–198.

41. Rouge-Pont F, Piazza PV, Kharouby M, Le Moal M, Simon H. Higher and longer stress-induced increase in dopamine concentrations in the nucleus accumbens of animals predisposed to amphetamine self-administration. A microdialysis study. Brain Res 1993;602:169–174.

42. Sawaguchi T, Matsumuea M, Kubota K. Catecholaminergic effects on neuronal activity related to a delayed response task in monkey prefrontal cortex. J Neurophysiol 1990;63:1385–1400.

43. Simon H, Taghzouti K, Gozlan H, et al. Lesion of dopaminergic terminals in the amygdala produces enhanced locomotor response to d-amphetamine and opposite changes in dopaminergic activity in prefrontal cortex and nucleus accumbens. Brain Res 1988;447:335–340.

44. Stinus L, Gaffori O, Simon H, Le Moal M. Disappearance of hoarding and disorganization of eating behavior after ventral mesencephalic tegmentum lesion in rats. J Comp Physiol Psychol 1978;92:288–296.

45. Tazi A, Dantzer R, Le Moal M. Schedule-induced polydipsia experience decreases locomotor response to amphetamine. Brain Res 1988;445:211–215.

46. Tazi A, Dantzer R, Mormede P, Le Moal M. Pituitary–adrenal correlates of schedule-induced polydipsia and wheel running in rats. Behav Brain Res 1986;19:249–256.

47. Thierry AM, Tassin JP, Blanc G, Glowinski J. Selective activation of the mesocortical dopaminergic system by stress. Nature 1976;263:242–244.

48. Watanabe H. Activation of dopamine synthesis in mesolimbic dopamine neurons by immobilization stress in the rat. Neuropharmacology 1984;23:1335–1338.

49. Willner P, Sanger M, Emmett-Oglesby M. Behavioural sensitization. Behav Pharmacol 1993;4:298–463.

50. Wise RA. The dopamine synapse and the notion of "pleasure centers" in the brain. Trends Neurosci 1980;3:91–94.

51. Wise RA, Bozarth MA. A psychomotor stimulant theory of addiction. Psychol Rev 1987;94:469–492.

52. Yokel RA, Wise RA. Attenuation of intravenous amphetamine reinforcement by central dopamine blockade in rats. Psychopharmacology 1976;48:311–318.

Back to Chapter

published 2000