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MOLECULAR AND CELLULAR
MECHANISMS IN DEPRESSION

ALAN F. SCHATZBERG
STEPHEN J. GARLOW

CHARLES B. NEMEROFF

Over the past three decades, considerable progress has been
made in our understanding of the biology of depressive
disorders. Still, there are a great number of unanswered
questions regarding the relative roles specific biological sys-
tems may play in pathogenesis. This debate in part reflects
a number of methodologic factors: a possibly over broad
definition of the clinical syndrome of major depression; lim-
itations inherent in studies using indirect measurement of
brain neuronal activity; problems inherent in postmortem
studies; and an overemphasis on cross-sectional rather than
longitudinal studies. In this chapter, we review the current
status of the neurochemical and cellular features of depres-
sive disorders.

BACKGROUND

Although Freud put forth a hypothesis for understanding
the psychological causes of depression in his classic paper,
‘‘Mourning and Melancholia,’’ he noted that some depres-
sions were clearly biological in etiology. Research over the
past 40 years has done much to point to likely ‘‘culprits’’
that are involved in the etiology of the disorder as well as
in the mediation of treatment response; these have been
reviewed several times recently (1,2).

Early research revolved around monoaminergic theories
with particular emphasis first on norepinephrine and later
serotonin. The basis for invoking these systems rested largely
on a number of pharmacologic observations that have been
termed ‘‘the psychopharmacologic bridge.’’ These observa-
tions included: reserpine, an early antihypertensive, caused
depression in some patients and depleted monoamine stores
in rat brain; iproniazid, a drug studied as an antitubercular
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agent, elevated depressed mood and inhibited monoamine
degradation by the enzyme, monoamine oxidase; imipra-
mine, a tricyclic compound originally studied as an antipsy-
chotic, had potent antidepressant effects and blocked the
reuptake of norepinephrine (and to some extent serotonin)
into presynaptic neurons.

These observations led two groups of investigators (3,4)
to argue that norepinephrine (NE) activity was decreased
in depressive disorders and elevated in manic or excited
states. Although a low norepinephrine state was the corner-
stone of Schildkraut’s catecholamine hypothesis (30), he
also argued for other types of dysregulation, including al-
tered receptor functioning. Indeed, more recent data have
pointed to biological heterogeneity of norepinephrine activ-
ity in depression with some patients demonstrating low and
others apparently elevated activity (5). Serotonin (5-HT)
theories, in contrast, have emphasized decreased production
or reuptake in depression.

As research has continued, investigators have noted a
number of other alterations in depressed patients, including
among others: elevated corticotropin-releasing hormone
(CRH); elevated acetylcholine activity; increased �amino-
butyric acid (GABA) levels; excessive glucocorticoid activity
in psychotic major depression; hippocampal volume loss,
perhaps reflecting the effects of excessive glucocorticoids on
neurogenesis, and so on. These have in turn led to or been
associated with a number of new biological hypotheses re-
garding why some individuals become depressed or develop
specific symptoms. In the following sections we review the
current status of these approaches.

NOREPINEPHRINE

Norepinephrine is a catecholamine that is found in various
tissues, including brain, plasma, sympathetic nervous sys-
tem, heart, and so on. It is synthesized from the amino
acid tyrosine, which forms L-Dopa via the enzyme tyrosine
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hydroxylase. L-Dopa is converted to dopamine via dopa de-
carboxylase and then in turn is converted to norepinephrine
via dopamine �-hydroxylase. In the adrenal and other tis-
sues, norepinephrine is converted to epinephrine via phenyl-
N-methyltransferase (PNMT). NE is degraded by the en-
zymes catechol-o-methyltransferase and monoamine oxi-
dase.

Norepinephrine measured in urine or plasma is largely
derived from non-central nervous system (CNS) sources.
In contrast, much early work in this area emphasized 3-
methoxy-4-hydroxyphenylglycol (MHPG), 20% to 30% of
which is derived from brain. The earliest studies on urinary
MHPG reported significantly lower levels in depressed pa-
tients than healthy controls (6). Further research revealed
low urinary MHPG levels were seen, particularly in bipolar
depressives and a subgroup of unipolar patients. As diagnos-
tic nomenclature differentiated bipolar I from II patients,
investigators reported low MHPG levels were characteristic
of bipolar I and not II patients (5,7,8).

Unipolar depressed patients are heterogeneous in their
MHPG levels. As indicated previously, a subgroup of unipo-
lar patients demonstrate low MHPG levels, similar to those
seen in bipolar I patients. In contrast, some unipolar pa-
tients demonstrate elevated MHPG levels (9). In these pa-
tients, urinary free cortisol is similarly elevated (10).

Catecholamine levels have been reported to parallel the
state of the disorder in bipolar patients. Bipolar patients
demonstrate significantly lower plasma NE and E levels
when depressed than when euthymic or manic. Manic bipo-
lar patients demonstrate elevated CSF, urine, or plasma
MHPG levels than depressives or healthy controls (11–13).
These data provide a rationale for measuring catecholamine
output in mood disorder and invoking NE as playing an
etiologic role; however, critics argue that some of the
changes in levels may be secondary to such features as activ-
ity or agitation.

Urinary MHPG levels have been explored as possible
tests for predicting antidepressant response. The earliest
studies (14,15) pointed to low MHPG levels predicting pos-
itive responses to imipramine but not amitriptyline. High-
MHPG patients responded to amitriptyline (14,15). These
findings led Maas (14) to hypothesize that there were two
forms of depression—one a low MHPG state reflected a
norepinephrine depression; another characterized by high
MHPG levels signified a serotonin depression. This hypoth-
esis, although heuristic, has not been borne out. Subsequent
studies failed: (a) to demonstrate that high MHPG levels
predicted amitriptyline response (16); and (b) in the light of
the development of selective serotonin reuptake inhibitors
(SSRIs) the serotonergic potency of amitriptyline was also
thrown into question. In contrast, several studies have re-
ported that low urinary MHPG levels do indeed predict
response to noradrenergic agents—nortriptyline, desipra-
mine, and maprotiline (17,18). Application of urinary
MHPG levels has been limited in part because of: difficulty

collecting 24-hr urine samples; the need for patients being
drug free when studied; and the lack of surety of the optimal
treatment for high-MHPG patients.

Tyrosine Hydroxylase/Locus Ceruleus

The locus ceruleus (LC) is the nucleus of the NE system
in brain. Neurons project from the LC to various parts of
the brain, particularly the frontal cortex. The LC has been
the focus of several postmortem studies of depressed patients
or suicide victims. Tyrosine hydroxylase activity has been
reported to be up-regulated in brains of suicide victims,
perhaps reflecting the effect of chronic stress (19). In an-
other study, NE neurons were reported to be modestly de-
creased in suicide victims relative to controls (20). A third
study reported that NE transporter sites were decreased in
depressed subjects who committed suicide but NE neurons
were not (21). These studies are somewhat contradictory in
direction of NE changes in suicide but suggest the system
is altered in suicide. A possible unifying hypothesis revolves
around up-regulation of TH in some neurons in an attempt
to compensate for loss of neurons or transporter sites.

Receptors

Receptors for NE are grouped into �1, �2, �1, and �2 sub-
types. �2 Receptor numbers and activity can be studied
using platelets; � receptors, using leukocytes. Both have also
been explored in postmortem brain. �2 Receptors are found
both presynaptically and postsynaptically. Presynaptic �2

receptors act as thermostats to regulate NE production and
release. �2 Receptors are universally connected to adenylate
cyclase second messenger systems such that agonists inhibit
cAMP formation. In contrast, � receptors, which are en-
tirely postsynaptic, stimulate adenylate cyclase and cAMP
formation.

�2 Receptor numbers and activity have been reported in
multiple studies to be increased in the platelets of depressed
patients (22,23), although there is also at least one negative
study (24). �2 Receptor activity can be explored by measur-
ing cAMP responses to challenges with agonists. Mooney
and associates (25) reported that epinephrine suppression
of prostaglandin-E induced cAMP formation is decreased
in the platelets of depressed patients. Siever and colleagues
(26) reported norepinephrine stimulation results in blunted
adenylate cyclase responses in an E1–�2 prostaglandin cou-
pled model. Platelet aggregation that results from �2 stimu-
lation has also been reported to be altered in depressed pa-
tients (27). Mooney and colleagues (25) using stimulation
of �2 receptors with a variety of agents, including NaF,
which directly affects G1 coupled proteins have hypothe-
sized that this down-regulation is not agonist specific and
have argued that a fundamental uncoupling of the recep-
tor–G-protein–AC complex occurs in some depressed pa-
tients.
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Growth hormone (GH) responses to challenge with
clonidine, an �2 agonist, has also been employed as a func-
tional test of �1 activity. Consistent blunting of GH re-
sponses in depressed patients has been reported (28,29).
Blunted GH response appears to be a trait marker; it is
found in remitted patients (30). The significance of blunted
GH responses to clonidine is not entirely clear, however.
Clonidine could be affecting presynaptic or postsynaptic
receptors (31). Also, somatostatin, an inhibitor of GH re-
lease, may play a role in the GH response to clonidine chal-
lenge.

�2 Receptors have also been explored in postmortem
brain of suicide victims. Increased binding sites have been
reported in several studies (32–34), although findings re-
garding the specific isoform and location of the increased
binding sites have not been consistent.

� Receptors have been studied in both leukocytes and
postmortem brain. Results have been less consistent than
with the �2 receptor. Decreased binding in leukocytes of
depressives has been reported inconsistently (35,36). Simi-
larly, in postmortem brain tissue, increased �-adrenergic
receptor density has been reported by Mann and colleagues
(37); however, decreased �max was reported by Crow and
co-workers (38) in the hippocampus of depressives. Effects
of previous medication may enter into these discrepant find-
ings, as could biological heterogeneity of catecholamine se-
cretion in depressed patients.

Depletion Strategies

�-Methylparatyrosine (AMPT) inhibits TH and ultimately
synthesis of norepinephrine. When given to healthy controls
or depressives it does little to lower mood (39,40); however,
remitted depressed patients on noradrenergic antidepres-
sants show a worsening of symptoms when challenged with
AMPT, suggesting that norepinephrine availability or tone
is needed for maintaining response to NE agents (41). In
contrast, patients on SSRIs do not relapse when challenged
with AMPT challenge. AMPT in previously depressed pa-
tients who are not currently on medication causes a recur-
rence of depressive symptoms (42). Taken together, these
data suggest the test could be a possible trait marker for
depressive vulnerability and that maintaining NE tone is
important for sustaining responses to noradrenergic drugs.

SEROTONIN

Serotonin (5-HT) is a monoamine neurotransmitter in-
volved in mood and appetite regulation. In brain, it is syn-
thesized within the raphe from l-tryptophan. Serotonin it-
self does not cross the blood–brain barrier. Synthesis
includes an initial conversion to 5-hydroxytryptophan (5
HTP) via the enzyme, tryptophan hydroxylase. 5-HTP is
decarboxylated by L-aromatic-amino acid decarboxylase to

form 5-HT. The principal metabolite of 5-HT is 5-hydrox-
yindole acetic acid (5-HIAA), which is easily measurable in
cerebrospinal fluid (CSF) and urine. MAO mediates part
of the metabolism of serotonin.

Metabolite Studies

Much of the early interest in serotonin was generated by
observations that low CSF 5-HIAA levels in hospitalized
depressives were associated with an increased risk for suicide
(43). Further studies revealed a relationship, particularly
with violent methods of suicide (e.g., hanging) (44) and
subsequently with difficulties with impulse control in sub-
jects with antisocial personality (45). Current theories em-
phasize a more general relationship between low serotonin
metabolite concentrations and impulse control problems;
the latter may predispose to suicide in subjects who become
depressed (46).

Transporter

The serotonin transporter (SERT), a 12-transmembrane
molecule, actively pumps 5HT into the presynaptic neuron.
Originally, the transporter was studied in platelets using
tritiated (3H) imipramine and more recently with the higher
affinity (3H)-paroxetine. Numerous studies have reported
decreased binding (�max) in the platelets of depressed pa-
tients as compared to healthy controls. A metaanalysis by
Ellis and Salmond (47) of 70 studies demonstrated an over-
all significant difference between patients and controls, al-
though not all studies concur. Medication did not appear
to account for these differences. Although mean values ap-
pear to differ between patients and controls, there is consid-
erable overlap in values among patients and controls such
that there are numbers of patients who do not appear to
have decreased binding; this overlap limits the use of the
test as a diagnostic measure.

Decreased 3H imipramine binding was once thought to
be a trait marker, that is, did not normalize with treatment.
Further study, however, has revealed that decreased 3H-
imipramine binding does normalize with treatment but one
must wait for sufficient periods to allow for protein regener-
ation.

The transporter has also been the subject of examination
in postmortem brain tissue. Early studies in this area pointed
to decreased binding in suicide brains (48); however, more
recent studies have failed to confirm these findings (49).
These data raise questions regarding the significance of ab-
normalities in the activity SERT in the pathophysiology of
depression and the relationship of peripheral and central
forms of the transporter. There are a number of methodo-
logic problems inherent in postmortem tissue that may ac-
count for differences among studies, including accuracy of
diagnosis, time from death to collection of brain tissue
preparation of tissue, and so on.
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One approach to studying the activity of the transporter
has been to apply functional imaging (e.g., SPECT to deter-
mine relative activity). The development of ligands (e.g.,
123I-�-CIT), that bind selectively to the transporter has al-
lowed in vivo study in humans. In one study, a significant
difference in binding using SPECT was observed between
depressed patients and controls (50). In this study, signifi-
cant differences were not observed in platelet binding to
3H-paroxetine, raising questions regarding whether the
transporter is regulated differently in the two tissues.

Receptors

Presynaptic and postsynaptic 5HT receptors have also been
studied in depressed patients. Over a dozen serotonin recep-
tors have been identified, although the possible roles for
many have not. Two that have attracted most study for the
longest periods are the 5HT1A and 5HT2a types.

5HT2a receptors are located postsynaptically in the CNS
and can also be found in platelets as well as in other non-
CNS tissue. As with the transporter, multiple studies have
investigated 5HT2a binding sites in the platelets of depressed
patients. An increase in binding sites (B-max) has been re-
ported in depressed and suicidal patients with some sugges-
tion that increased binding in suicidal patients may be inde-
pendent of a diagnosis of major depression (51–53).
Generally, 5HT2a binding has been thought to be a state
marker, although one recent study has suggested binding
may not normalize with SSRI treatment (54).

5HT2a binding has also been studied in postmortem
brain tissue. As with the serotonin transporter, results here
have been mixed with some studies demonstrating increased
prefrontal cortical binding but others not (37,55–57).
5HT2a receptors are found in frontal cortex suggesting a
role in the cognitive aspects of depression.

PET ligands have been developed to study 5HT2a activity
in brain. One study employed [18F]- altanserin and reported
a reduction in activity in right posterolateral frontal, orbito-
frontal, and anterior cingulate regions in depressives (58).
In another study, no differences were found between nonsu-
icidal depressives and controls using [18F-] setoperone (59).
The exclusion of patients with recent suicidal ideation may
have played a role in not finding differences between pa-
tients and controls. Studies on effects of antidepressants on
5HT2a binding using PET have also yielded mix results.
One group reported that SSRIs appear to increase 18F-seto-
perone binding (60), whereas another recently reported that
3 to 4 weeks of desipramine treatment resulted in a signifi-
cant decrease in 5HT2 activity in multiple areas, particularly
in frontal cortex (61). This group was unable to conclude
whether the ligand was binding to 5HT2a or 5HT2c recep-
tors.

5HT2A receptors are coupled to the phosphoinositide
second messenger system. When 5HT2a receptors are acti-
vated by agonists, phosphatidyl inositol 4,5 bisphosphate is

hydrolyzed by phospholipase C to form two second messen-
gers, diacylglycerol and inositol 1,4,5-triphosphate. Protein
kinase C is activated by diacylglycerol. This system has been
studied in the brains of suicide victims. Pandey and associ-
ates reported [3H] phorbol dibutyrate binding to protein
kinase C in prefrontal cortex was lower in teenage suicide
victims (62). More recently they observed that both phos-
pholipase C activity and the �1 isozyme protein level were
decreased of teenage suicide victims (63). Depression per
se did not appear to affect the differences between suicide
victims and controls. In contrast Hrdina and associates (64)
reported unaltered protein kinase C activity in antidepres-
sant free depressives who suicided, and Coull and colleagues
(65) reported that phorbol dibutyrate binding sites were
increased in the prefrontal cortex of adults with similar his-
tories. Age, diagnosis of depression, antidepressant use, and
time to collection of brain may play a role in these disparate
findings.

The 5HT1a autoreceptor controls release of serotonin
from the presynaptic neuron. Over the past few years, multi-
ple groups have explored the potential use of pindolol, a
5HT1a antagonist, to hasten response to antidepressants or
bring out responses in refractory patients. These studies
have yielded mixed results suggesting that pindolol may
hasten response to antidepressants in milder or first-episode
patients seen in primary care settings. 5HT1a receptor num-
ber and activity have been studied in postmortem brain.
Increased 5HT1a �max has been reported in suicide victims
using nonviolent means compared to violent completers or
controls but others have failed to find alterations in 5HT1a

activity in suicide victims (66–68).

Genetic Studies

A number of studies have explored the possible role of ge-
netics may play, particularly vis-à-vis transporter activity.
Long and short forms of the transporter gene appear to be
relatively common in the general population. An early study
indicated a relationship of the short form with an increased
frequency of a variety of neurotic or behavioral traits (69).
Allelic variation has also been applied to predicting drug
response. In three studies in Europe and the United States,
homozygotes or heterozygotes for the S-form were reported
to show sluggish responses to SSRIs (70–72). The opposite
was found in a Korean study (73). Clearly, further work is
needed to understand the importance of genetic forms of
the transporter in major depression. More recently, Mann
and colleagues (69) reported that the short form genotype
was associated with a diagnosis of major depression but not
with suicide or 5HT-transporter binding in postmortem
tissue.

Depletion Studies

Brain concentrations of serotonin are highly dependent on
circulating levels of tryptophan, which competes with other
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amino acids for transport into the brain. Charney and Del-
gado have pioneered in the use of an amino acid cocktail
that is relatively devoid of L-tryptophan to rapidly decrease
plasma tryptophan and ultimately brain serotonin. In these
studies, the drink was first administered to subjects who had
responded to various antidepressants and who were being
maintained on medication. Diphenhydramine has been
commonly used as the comparison cocktail. Euthymic pa-
tients on SSRIs but not TCAs rapidly experienced depres-
sive symptoms when depleted of L-tryptophan, suggesting
the need for maintaining adequate serotonin levels to ensure
continued drug response (74,75). Parallel decreases in glu-
cose utilization in frontal and thalamic regions using PET
have also been reported in depressives who experience a
relapse in symptoms (76). In contrast, there are multiple
reports of depletion not causing a clear recurrence of symp-
toms in patients treated with bupropion or electroconvul-
sive therapy (75,77–79). Studies have used a variety of dif-
ferent methods (e.g., patients’ being on or off medication,
inclusion or exclusion of suicidal patients, etc.), and these
differences may account for the discrepant findings. The
degree and duration of response observed before the deple-
tion challenge is administered may be of particular impor-
tance (79). Patients who are in remission or have shown a
prolonged response are unlikely to demonstrate significant
worsening of moods (79). These data suggest recent re-
sponders are those who are susceptible to experiencing re-
lapse with depletion strategies. Depletion of unmedicated
euthymic depressives does not appear to induce recurrence,
indicating maintaining serotonin tone is important primar-
ily for continuance of response in recently remitted patients
(79).

Of interest is a recent report that women controls show
much lower rates of 5HT synthesis and a greater decrease
in response to depletion than men do (80). This gender-
based difference is consistent with a recent observation that
chronically depressed women are more responsive to an
SSRI than men are (81).

Fenfluramine Challenge

Fenfluramine, previously marketed as an appetite suppres-
sant, causes a release of serotonin from presynaptic neurons
and results in an elevation of prolactin. Prolactin responses
to fenfluramine challenge are blunted in depressed patients
(82,83) and there are some data to suggest this may be a
trait marker (84). However, bipolar manic and axis II pa-
tients may also demonstrate blunted prolactin responses,
raising questions regarding the specificity of the test. (See
refs. 1 and 2 for further review.)

DOPAMINE

As indicated, dopamine (DA) is a precursor for norepineph-
rine. Although NE has played a central role in etiologic

theories of depression, DA has been emphasized far less in
depression in spite of its being widely distributed in brain.

CSF levels of homovanillic acid (HVA), a major metabo-
lite, are decreased in depressives (2,85,86), although some
studies have reported elevated CSF DA, but not HVA levels
(87). Urinary DOPAC levels are decreased in depressives
compared with controls (88); in one study, DOPAC levels
appeared associated with suicidal behavior (85). Dopami-
nergic agents such as psychostimulants, nomifensine, and
the dopamine agonist pramipexole all have antidepressant
effects in nondelusional patients.

In contrast, elevated mesolimbic DA activity has been
hypothesized to play a role in delusional depression (89).
Elevated CSF HVA levels have been associated with psy-
chotic symptoms and agitation in major depression (89),
and increased plasma DA and HVA levels have also been
reported in delusional depression (90,91). Increased meso-
limbic DA activity has been postulated to occur secondary
to elevated hypothalamic–pituitary–adrenal (HPA) axis ac-
tivity (89). Recent studies in rats, nonhuman primates, and
psychotic depressives suggest elevated glucocorticoid activ-
ity could also result in altered or decreased prefrontal corti-
cal dopamine metabolism and to alterations in attention
and response inhibition (92,93). These data suggest in-
creased HPA axis activity could affect DA turnover differ-
ently in specific brain regions—alterations that have been
suggested in schizophrenia. Antipsychotic drugs appear to
play a key role in treatment of delusional depression and
glucocorticoid receptor antagonists are being actively stud-
ied in the disorder.

GABA

GABA has become a focus of greater study over the past
several years with the increasing use of anticonvulsants in
mood disorders. GABA is a major inhibitory neurotransmit-
ter in brain and regulates seizure threshold as well as norepi-
nephrine and dopamine turnover. There are two types of
GABA receptors. GABAA receptors have been studied in
anxiolysis because of their location within a benzodiaze-
pine–GABA receptor complex that is coupled to chloride
channels. GABAB receptors are coupled to Ca�2 channels.
In rats, antidepressants and mood stabilizers appear to up-
regulate frontal-cortical GABAB, but not GABAA, receptors
(94,95). GABAB agonists may enhance cAMP responses to
norepinephrine and �-adrenergic down-regulation in re-
sponse to tricyclic antidepressants, suggesting a facilitative
role for GABAB.

GABA is also enhanced by anticonvulsants such as val-
proic acid, which act as mood stabilizers. GABA levels have
been reported to be decreased in the CSF of depressed pa-
tients in some but not all studies (96,97). Plasma GABA
levels have also been reported to be lower in unipolar depres-
sives (98,99), and this may not normalize with treatment
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(100). Alcoholism can also be associated with low plasma
GABA levels (101). In refractory depressed patients
undergoing cingulotomy, GABA levels are inversely related
to degree of depression (102). A number of groups are ac-
tively exploring using fMRI to image GABA in the brains
of patients with mood disorders, both before and after treat-
ment.

NEUROENDOCRINE SYSTEMS

Neuroendocrine systems were originally studied as gateways
to the exploration of neurotransmitter activity, such as nor-
epinephrine and serotonin, in depression. Over time, em-
phasis has shifted to exploring the roles components of sev-
eral of these axes may play in the pathogenesis of specific
symptoms or disease states. Three axes, hypothalamic–
pituitary–adrenal (HPA), hypothalamic–pituitary–thyroid
(HPT), human growth hormone (HGH), in particular have
been examined in major depression.

HPA Axis

The hypothalamic–pituitary–adrenal (HPA) axis is fre-
quently activated during periods of stress and depression.
The axis consists of three major components: (a) corticotro-
pin releasing hormone (CRH), which is located in the para-
ventricular nucleus of the hypothalamus and stimulates the
pituitary to release adrenocorticotropin hormone (ACTH);
(b) ACTH which stimulates the adrenal cortex to release
cortisol; and (c) cortisol, which feeds back to the pituitary,
hypothalamus, and hippocampus to decrease release of
CRH and ACTH.

Multiple lines of evidence point to abnormalities of the
axis in depression. Initial studies focused on excretion of
cortisol and its precursors in patients with depression. Acti-
vation of the axis was also associated with suicidal ideation.
Sachar in a classic study reported elevated serum cortisol
levels over a 24-hour period in severely depressed patients
(103). Elevations were particularly seen in the evening and
overnight, times when the axis should be quiescent. These
data generally were interpreted as indicating that the de-
pressed patient was highly stressed.

One method for challenging the axis is to administer the
synthetic steroid dexamethasone (DEX) (104). The ex-
pected response is to suppress the axis because the pituitary
and perhaps the hypothalamus read the DEX signal as indi-
cating sufficient glucocorticoid activity, and shuts off pro-
duction or release of cortisol. Depressed patients demon-
strate a significantly higher nonsuppression rate than do
controls, although the rates of nonsuppression are relatively
low in many studies (105). Patients with severe or psychotic
depression demonstrate relatively high rates of nonsuppres-
sion or high postdexamethasone cortisol levels (106). In-
deed, psychosis appears to be the greatest symptom or syn-

drome contributor to DEX nonsuppression, greater than
the effect of severity or melancholia (107). Outpatients with
milder and nonpsychotic disorders show much lower rates
of nonsuppression. This difference in types of patients stud-
ied may help explain the variability in DEX nonsuppression
rates across studies. DEX responses have also been used to
assess adequacy of treatment with patients who are nonsup-
pressors after treatment showing a significantly increased
risk for relapse (108).

Glucocorticoid overactivity has been hypothesized to
play a direct role in the development of cognitive impair-
ment and delusions in patients with psychotic major depres-
sion (89). Trials are currently underway exploring the effi-
cacy of glucocorticoid antagonists in psychotic depression
(109). Moreover, glucocorticoids have been hypothesized to
cause increases in glutamate activity, decrease nerve growth
factor activity, and hippocampal volume loss on MRI in
patients with a history of severe depression, but there are
no studies that have simultaneously explored these various
dimensions in depressed patients (110). Recently, Rojkow-
ska and colleagues did report that neuronal size and density
and glial densities were reduced in prefrontal cortical regions
in postmortem tissue from subjects with major depression
as compared to controls (111). Overall, there has been a
shift from viewing excessive glucocorticoid activity in major
depression as an epiphenomenon to its having specific ef-
fects on cognition or symptom formation.

Study of more proximal components of the axis have
also pointed to marked abnormalities in major depression.
In most of the relevant studies, CRH levels have been re-
ported to be elevated in the CSF or plasma of depressed
patients (1,112). Challenge with ovine or human forms of
CRH results in blunted ACTH responses in depressives
suggesting increased central CRH release (113). Remission
of episodes appears to be associated with normalization of
CRH studies. Postmortem studies have reported that CRH
mRNA expression was increased (114) and CRH �max
was decreased in the frontal cortex of suicide victims (115).
These data suggest CRH release from the hypothalamus
may be associated with a down-regulation of CRH in other
brain regions (2).

Imaging studies have reported increased pituitary and
adrenal size during depression, which appear to normalize
with recovery (116,117). Increased pituitary size and ele-
vated CSF CRH levels are associated with DEX nonsuppres-
sion (118). Elevated plasma ACTH levels have been re-
ported in psychotic depression (119).

ACTH release is not only stimulated by CRH. For exam-
ple, arginine vasopressin (AVP) may enhance CRH’s stimu-
lation of ACTH. AVP neurons are increased in the PVN
of suicide victims (120) and serum AVP has been reported
in one study to be elevated in hospitalized depressives (121).

CRH is also found in extrahypothalamic brain regions.
In the amygdala, CRH appears to play a key role in fear
responses and over-activation of these systems may lead to
panic and depression (2). Amygdala CRH has been reported
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to be under positive (stimulatory) feedback by cortisol and
this observation has spurred on much research to develop
specific CRH antagonists to treat anxiety and depressive
disorders. A recent report on an open label trial suggested
that a CRH antagonist might be effective in hospitalized
depressives (122).

Although the literature has emphasized elevated CRH
and cortisol activity in major depression (in part because of
the emphasis on DST nonsuppression), there is emerging
evidence that CRH and cortisol activity may only be ele-
vated in some subtypes of major depression and that some
depressed patients may actually have low HPA activity. Re-
cent data suggest that depressed patients with a history of
early abuse (as well as those with psychosis) may be most
consistently at risk for demonstrating elevated ACTH levels
in response to social stress (123). Depressives who were not
abused as children did not show similar responses. In a
recent study, we reported decreased levels of ACTH or corti-
sol activity over 24 hours in nonpsychotic depressives as
compared to controls (119). Similarly, low values have been
reported in several other types of patients, including atypical
depression, posttraumatic stress disorder, so-called burn out
syndromes, and so on. Thus, both decreased and elevated
HPA axis activity may be found in specific depressive sub-
types. In many ways this parallels the findings in catechol-
amine activity in depressed patients.

This seeming contradiction in findings or emphasis over
time may have several explanations. First, the DST as we
use it may not measure cortisol overactivity as much as it
does central CRH overdrive in response to suppressing the
pituitary because DEX poorly penetrates brain at the doses
used in the test. Second, previous studies have often not
explored the role of psychosis or early abuse. Third, rela-
tively few studies on the HPA axis in depression have ex-
plored cortisol activity over the full 24-hour period.

HPT Axis

The overlap in symptoms between patients with hypothy-
roidism and those with major depression has led to number
of studies on the hypothalamic–pituitary–thyroid (HPT)
axis in patients with mood disorders. These studies have
yielded intriguing, although at times, conflicting results.

Thyrotropin-releasing hormone (TRH) is released from
the hypothalamus and stimulates TRH receptors in the pi-
tuitary to release thyroid-stimulating hormone (TSH),
which in turn stimulates specific receptors in the pituitary to
release triiodothyronine (T3) and thyroxine (T4) hormones.
Thyroid hormones provide feedback to both the hypothala-
mus and pituitary to regulate the axis.

Activity of the axis can be measured in several ways:
circulating levels of T3 and T4—both bound and unbound;
TRH levels in the CSF; TSH responses to TRH administra-
tion (TRH-stimulation test); and circulating TSH levels.
In addition some patients demonstrate antibodies to thyroid

tissue suggestive of an autoimmune thyroiditis, often in the
face of normal T4, T3, or TSH levels.

TRH is found in extra-hypothalamic regions in brain.
CSF TRH was increased in two small studies of depressed
patients as compared to controls (124,125), although not
all studies agree (126). Elevated TRH levels should be ac-
companied by a blunted TSH response to TRH because
TRH levels in the pituitary would be expected to be down-
regulated in the face of elevated TRH. Indeed, multiple
studies have reported such blunting in a relatively high per-
centage (approximately 25%) of patients with major depres-
sion. A recent review concluded that 41 of 45 studies re-
ported blunted TSH responses to TRH in major depression
(127). Blunting of TSH responses to TRH in these patients
is not owing to clinical or subclinical hypothyroidism be-
cause thyroid parameters were generally within normal lim-
its in these patients.

Type I hypothyroidism is characterized by decreased lev-
els of T3 and/or T4, increased TSH, and increased TSH
responses to TRH (1). Antithyroid antibodies may be pres-
ent. Type II hypothyroidism is characterized by normal T3

or T4 levels but otherwise similar abnormalities as in Type
I disease (1). Rates of Type III or IV subclinical hypothy-
roidism have been reported to be elevated in depressed pa-
tients. These syndromes are both characterized by normal
circulating levels of T3, T4, and TSH but have other abnor-
malities such as elevated TSH responses to TRH or the
presence of antithyroid antibodies. In one study, depressed
patients with high normal thyroid levels were also reported
to demonstrate exaggerated TSH responses to TRH (128).
These data have been interpreted as indicating some patients
with major depression may have subclinical hypothyroid-
ism. Indeed, asymptomatic autoimmune thyroiditis with
positive antibodies has been reported to be relatively high
(9% to 25%) in several surveys of depressed patients (127,
129). Taken together, TSH stimulation test data suggest
elevated or decreased TRH activity could be involved in
major depression, depending on whether patients met crite-
ria for subclinical hypothyroidism.

T3 has been reported to be an effective augmentor of
responses to antidepressants and appears to exert greater
effects than does T4 (130). Patients with a history of thyroid
disease (e.g., adenoma) who were taking suppressing or re-
placement doses of thyroxine or T4 demonstrated an im-
provement in mood and cognitive function when T3—but
not placebo—was added (131). One possible explanation
for the differential effects of T4 and T3 on mood rests with
local tissue conversion of T4 to T3 that in brain is mediated
by Type II 5′ deiodinase and may be dysregulated in some
patients. Depressed patients have been reported to demon-
strate increased reversed T3 levels in CSF (130), which sug-
gests inhibition of the Type II 5′ deiodinase and subsequent
increased activity of the Type III of the enzyme. Cortisol
can inhibit Type II of the enzyme and may play a role in
the increased rT3 levels. Of interest is a recent report (133)
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that in depressed patients low T3 levels predicted earlier
relapse, pointing further to an important role for T3 in
mood relation.

Transthyretin is a protein that transports thyroid hor-
mone from the periphery to the brain via the choroid plexus.
Transthyretin levels have been reported to be low in refrac-
tory depressed patients (134). This may also help explain
possible CNS enhancing effects of T3 in the face of normal
circulating thyroid hormone levels.

Overall, research on the HPT axis has produced some
intriguing leads for understanding the pathophysiology of
depression and improving its treatment. However, there are
still a number of seeming contradictions regarding the direc-
tion and specific nature of HPT alterations in depression.
Data point to both elevations in central TRH activity and
subtle forms of hypothyroidism (suggestive of low T3 and
TRH activity) as playing potential roles in major depression.

Human Growth Hormone

Growth hormone (GH) is synthesized in the anterior pitui-
tary. Two hypothalamic hormones, growth hormone releas-
ing factor (GRF) and somatostatin modulate its release from
the pituitary. GRF is stimulating; in contrast, somatostatin
inhibits release. Somatostatin is also found in extra-hypotha-
lamic regions, and appears to act as a neurotransmitter. The
major neurotransmitters involved in mood regulation (e.g.,
norepinephrine, serotonin, and dopamine) all affect GH
release, and these systems can be challenged by specific com-
pounds (e.g., apomorphine, clonidine, etc.).

Diurnal rhythms of GH, as measured in plasma, are dis-
rupted in depression. Nocturnal GH is elevated in depres-
sion (135), but daylight-stimulated GH levels are increased
in both unipolar and bipolar depressives (136).

As indicated, GH responses to clonidine are blunted in
depression (28). GH responses to GRF have also been ex-
plored in patients with major depression with several, but
not all, groups reporting blunted GH responses (137–139).
CSF levels of somatostatin, which inhibits GH, CRH, and
ACTH release, are also reduced in depression (140,141),
such that somatostatin does not appear to provide an expla-
nation for the blunted GH responses to GRF in depression.
Low somatostatin levels in depression may reflect increased
cortisol activity (1,142) and appear to normalize with treat-
ment (2). Low CSF somatostatin has also been observed in
various neurological disorders (e.g., Alzheimer’s disease).

CONCLUSION

Proliferation of research into the biology of depression has
resulted in a number of intriguing leads for understanding
the pathophysiology of major depression. Most studies have
focused on single biological systems such that there is a
dearth of studies that simultaneously explore multiple sys-

tems and their complex interactions in depression. Also,
research has tended to emphasize cross-sectional rather than
longitudinal designs such that we have little understanding
of the biological underpinnings of initiation, maintenance,
and termination of depressive episodes. Future research that
combines genetic risk factors with longitudinal study of
multiple systems will likely lead to breakthroughs in our
understanding of the biology of the disorder. Also, greater
emphasis on the biology of specific depressive subtypes (e.g.,
delusional depression) or of symptom dimensions may pro-
vide greater insights.
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